Dynamical tides during the inspiral of rapidly spinning neutron stars: Solutions beyond mode resonance (2404.00147v2)
Abstract: We investigate the dynamical tide in a gravitational wave (GW)-driven coalescing binary involving a neutron star (NS). The NS is assumed to spin rapidly, with its spin axis anti-aligned with the orbit. Such an NS may exist if the binary forms dynamically in a dense environment, and it can lead to a strong tide because the f-mode can be resonantly excited during the inspiral. We present a new analytical solution for the f-mode resonance by decomposing the tide into a resummed equilibrium component and a dynamical component that is excited only around resonance. This solution simplifies numerical implementations by avoiding the subtraction of two diverging terms. It also extends the solution's validity to frequencies beyond mode resonance. When the dynamical tide back reacts on the orbit, the commonly adopted effective Love number is insufficient because it does not capture the tidal torque on the orbit that dominates the back reaction during mode resonance. An additional dressing factor originating from the imaginary part of the Love number is introduced to model the torque. The dissipative interaction between the NS and the orbital mass multipoles is computed including the dynamical tide. Orbital phase shifts caused by the $l=3$ and $l=2$ f-modes can reach 0.5 and 10 radians at their respective resonances if the NS has a spin rate of 850 Hz. Because of the large impact of the dynamical tide, a linearized analytical description becomes insufficient. After mode excitation, the orbit cannot remain quasi-circular, and the eccentricity excited by the dynamical tide can approach $e\simeq 0.1$, leading to non-monotonic frequency evolution which breaks the stationary phase approximation commonly adopted by frequency-domain waveform constructions. The GW radiation from the excited f-mode alone can be detected with a signal-to-noise ratio exceeding unity with the next-generation detectors.
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., Properties of the Binary Neutron Star Merger GW170817, Physical Review X 9, 011001 (2019a), arXiv:1805.11579 [gr-qc] .
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., GW170817: Measurements of Neutron Star Radii and Equation of State, Phys. Rev. Lett. 121, 161101 (2018), arXiv:1805.11581 [gr-qc] .
- K.-W. Lo and L.-M. Lin, The Spin Parameter of Uniformly Rotating Compact Stars, ApJ 728, 12 (2011), arXiv:1011.3563 [astro-ph.HE] .
- J. Samsing, M. MacLeod, and E. Ramirez-Ruiz, The Formation of Eccentric Compact Binary Inspirals and the Role of Gravitational Wave Emission in Binary-Single Stellar Encounters, ApJ 784, 71 (2014), arXiv:1308.2964 [astro-ph.HE] .
- D. Lai, F. A. Rasio, and S. L. Shapiro, Ellipsoidal Figures of Equilibrium: Compressible Models, ApJS 88, 205 (1993).
- D. Lai, F. A. Rasio, and S. L. Shapiro, Hydrodynamic Instability and Coalescence of Binary Neutron Stars, ApJ 420, 811 (1994a), arXiv:astro-ph/9304027 [astro-ph] .
- É. É. Flanagan and T. Hinderer, Constraining neutron-star tidal Love numbers with gravitational-wave detectors, Phys. Rev. D 77, 021502 (2008), arXiv:0709.1915 [astro-ph] .
- D. Bini and T. Damour, Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism, Phys. Rev. D 90, 124037 (2014), arXiv:1409.6933 [gr-qc] .
- N. V. Krishnendu, K. G. Arun, and C. K. Mishra, Testing the Binary Black Hole Nature of a Compact Binary Coalescence, Phys. Rev. Lett. 119, 091101 (2017), arXiv:1701.06318 [gr-qc] .
- I. Harry and T. Hinderer, Observing and measuring the neutron-star equation-of-state in spinning binary neutron star systems, Classical and Quantum Gravity 35, 145010 (2018), arXiv:1801.09972 [gr-qc] .
- W. C. G. Ho and D. Lai, Resonant tidal excitations of rotating neutron stars in coalescing binaries, MNRAS 308, 153 (1999), arXiv:astro-ph/9812116 [astro-ph] .
- S. Ma, H. Yu, and Y. Chen, Excitation of f -modes during mergers of spinning binary neutron star, Phys. Rev. D 101, 123020 (2020), arXiv:2003.02373 [gr-qc] .
- H.-J. Kuan and K. D. Kokkotas, f -mode imprints on gravitational waves from coalescing binaries involving aligned spinning neutron stars, Phys. Rev. D 106, 064052 (2022), arXiv:2205.01705 [gr-qc] .
- H.-J. Kuan and K. D. Kokkotas, Last three seconds: Packed message delivered by tides in binary neutron star mergers, Phys. Rev. D 108, 063026 (2023), arXiv:2309.04622 [gr-qc] .
- D. Lai, Resonant Oscillations and Tidal Heating in Coalescing Binary Neutron Stars, MNRAS 270, 611 (1994), arXiv:astro-ph/9404062 [astro-ph] .
- É. É. Flanagan and É. Racine, Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries, Phys. Rev. D 75, 044001 (2007), arXiv:gr-qc/0601029 [gr-qc] .
- A. Reisenegger and P. Goldreich, Excitation of Neutron Star Normal Modes during Binary Inspiral, ApJ 426, 688 (1994).
- H. Yu and N. N. Weinberg, Resonant tidal excitation of superfluid neutron stars in coalescing binaries, MNRAS 464, 2622 (2017a), arXiv:1610.00745 [astro-ph.HE] .
- H. Yu and N. N. Weinberg, Dynamical tides in coalescing superfluid neutron star binaries with hyperon cores and their detectability with third-generation gravitational-wave detectors, MNRAS 470, 350 (2017b), arXiv:1705.04700 [astro-ph.HE] .
- H.-J. Kuan, A. G. Suvorov, and K. D. Kokkotas, General-relativistic treatment of tidal g-mode resonances in coalescing binaries of neutron stars - I. Theoretical framework and crust breaking, MNRAS 506, 2985 (2021a), arXiv:2106.16123 [gr-qc] .
- H.-J. Kuan, A. G. Suvorov, and K. D. Kokkotas, General-relativistic treatment of tidal g-mode resonances in coalescing binaries of neutron stars - II. As triggers for precursor flares of short gamma-ray bursts, MNRAS 508, 1732 (2021b), arXiv:2107.00533 [astro-ph.HE] .
- W. Xu and D. Lai, Resonant tidal excitation of oscillation modes in merging binary neutron stars: Inertial-gravity modes, Phys. Rev. D 96, 083005 (2017), arXiv:1708.01839 [astro-ph.HE] .
- E. Poisson, Gravitomagnetic tidal resonance in neutron-star binary inspirals, Phys. Rev. D 101, 104028 (2020), arXiv:2003.10427 [gr-qc] .
- S. Ma, H. Yu, and Y. Chen, Detecting resonant tidal excitations of Rossby modes in coalescing neutron-star binaries with third-generation gravitational-wave detectors, Phys. Rev. D 103, 063020 (2021), arXiv:2010.03066 [gr-qc] .
- P. K. Gupta, J. Steinhoff, and T. Hinderer, Relativistic effective action of dynamical gravitomagnetic tides for slowly rotating neutron stars, Physical Review Research 3, 013147 (2021), arXiv:2011.03508 [gr-qc] .
- A. Passamonti, N. Andersson, and P. Pnigouras, Dynamical tides in neutron stars: the impact of the crust, MNRAS 504, 1273 (2021), arXiv:2012.09637 [astro-ph.HE] .
- T. Damour, A. Nagar, and L. Villain, Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals, Phys. Rev. D 85, 123007 (2012), arXiv:1203.4352 [gr-qc] .
- B. D. Lackey and L. Wade, Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars, Phys. Rev. D 91, 043002 (2015), arXiv:1410.8866 [gr-qc] .
- N. Andersson and W. C. G. Ho, Using gravitational-wave data to constrain dynamical tides in neutron star binaries, Phys. Rev. D 97, 023016 (2018), arXiv:1710.05950 [astro-ph.HE] .
- P. Landry and R. Essick, Nonparametric inference of the neutron star equation of state from gravitational wave observations, Phys. Rev. D 99, 084049 (2019), arXiv:1811.12529 [gr-qc] .
- G. Pratten, P. Schmidt, and N. Williams, Impact of Dynamical Tides on the Reconstruction of the Neutron Star Equation of State, Phys. Rev. Lett. 129, 081102 (2022), arXiv:2109.07566 [astro-ph.HE] .
- T. Dietrich, S. Bernuzzi, and W. Tichy, Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations, Phys. Rev. D 96, 121501 (2017), arXiv:1706.02969 [gr-qc] .
- A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D 59, 084006 (1999), arXiv:gr-qc/9811091 [gr-qc] .
- N. Andersson and P. Pnigouras, Exploring the effective tidal deformability of neutron stars, Phys. Rev. D 101, 083001 (2020), arXiv:1906.08982 [astro-ph.HE] .
- N. Andersson and P. Pnigouras, The phenomenology of dynamical neutron star tides, MNRAS 503, 533 (2021).
- A. Passamonti, N. Andersson, and P. Pnigouras, Dynamical tides in superfluid neutron stars, MNRAS 514, 1494 (2022), arXiv:2202.05161 [astro-ph.HE] .
- R. Gamba and S. Bernuzzi, Resonant tides in binary neutron star mergers: Analytical-numerical relativity study, Phys. Rev. D 107, 044014 (2023), arXiv:2207.13106 [gr-qc] .
- J. Christensen-Dalsgaard, Lecture Notes on Stellar Oscillations (Institut for Fysik og Astronomi, Aarhus Universitet, 1998).
- C. Aerts, J. Christensen-Dalsgaard, and D. W. Kurtz, Asteroseismology (2010).
- D. Lai, Jupiter’s Dynamical Love Number, Planet. sci. j. 2, 122 (2021), arXiv:2103.06186 [astro-ph.EP] .
- J. W. Dewberry and D. Lai, Dynamical Tidal Love Numbers of Rapidly Rotating Planets and Stars, ApJ 925, 124 (2022), arXiv:2110.12129 [astro-ph.EP] .
- N. N. Weinberg, Growth Rate of the Tidal p-Mode g-Mode Instability in Coalescing Binary Neutron Stars, ApJ 819, 109 (2016), arXiv:1509.06975 [astro-ph.SR] .
- E. Poisson and C. M. Will, Gravity (Cambridge University Press, 2014).
- J. L. Friedman and B. F. Schutz, Lagrangian perturbation theory of nonrelativistic fluids., ApJ 221, 937 (1978).
- C. Cutler and É. E. Flanagan, Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform\?, Phys. Rev. D 49, 2658 (1994), arXiv:gr-qc/9402014 [gr-qc] .
- L. Lindblom, B. J. Owen, and D. A. Brown, Model waveform accuracy standards for gravitational wave data analysis, Phys. Rev. D 78, 124020 (2008), arXiv:0809.3844 [gr-qc] .
- C. M. Will, Compact binary inspiral: nature is perfectly happy with a circle, Classical and Quantum Gravity 36, 195013 (2019), arXiv:1906.08064 [gr-qc] .
- C. D. Murray and S. F. Dermott, Solar System Dynamics (Cambridge University Press, 2000).
- P. Arras and N. N. Weinberg, Urca reactions during neutron star inspiral, MNRAS 486, 1424 (2019), arXiv:1806.04163 [astro-ph.HE] .
- L. Landau and E. Lifshitz, Mechanics: Volume 1, v. 1 (Elsevier Science, 1982).
- N. N. Weinberg, P. Arras, and J. Burkart, An Instability due to the Nonlinear Coupling of p-modes to g-modes: Implications for Coalescing Neutron Star Binaries, ApJ 769, 121 (2013), arXiv:1302.2292 [astro-ph.SR] .
- T. Venumadhav, A. Zimmerman, and C. M. Hirata, The Stability of Tidally Deformed Neutron Stars to Three- and Four-mode Coupling, ApJ 781, 23 (2014), arXiv:1307.2890 [astro-ph.HE] .
- R. Essick, S. Vitale, and N. N. Weinberg, Impact of the tidal p -g instability on the gravitational wave signal from coalescing binary neutron stars, Phys. Rev. D 94, 103012 (2016), arXiv:1609.06362 [astro-ph.HE] .
- N. Seto, Highly Eccentric Kozai Mechanism and Gravitational-Wave Observation for Neutron-Star Binaries, Phys. Rev. Lett. 111, 061106 (2013), arXiv:1304.5151 [astro-ph.CO] .
- S. Naoz, The Eccentric Kozai-Lidov Effect and Its Applications, ARA&A 54, 441 (2016), arXiv:1601.07175 [astro-ph.EP] .
- J. Samsing and E. Ramirez-Ruiz, On the Assembly Rate of Highly Eccentric Binary Black Hole Mergers, ApJ 840, L14 (2017), arXiv:1703.09703 [astro-ph.HE] .
- C. Chirenti, R. Gold, and M. C. Miller, Gravitational Waves from F-modes Excited by the Inspiral of Highly Eccentric Neutron Star Binaries, ApJ 837, 67 (2017), arXiv:1612.07097 [astro-ph.HE] .
- M. Vick and D. Lai, Tidal effects in eccentric coalescing neutron star binaries, Phys. Rev. D 100, 063001 (2019), arXiv:1906.08780 [astro-ph.HE] .
- A. Parisi and R. Sturani, Gravitational waves from neutron star excitations in a binary inspiral, Phys. Rev. D 97, 043015 (2018), arXiv:1705.04751 [gr-qc] .
- H. Yang, Inspiralling eccentric binary neutron stars: Orbital motion and tidal resonance, Phys. Rev. D 100, 064023 (2019), arXiv:1904.11089 [gr-qc] .
- J.-S. Wang and D. Lai, Evolution of inspiralling neutron star binaries: Effects of tidal interactions and orbital eccentricities, Phys. Rev. D 102, 083005 (2020), arXiv:2009.08300 [astro-ph.HE] .
- P. Arras, H. Yu, and N. N. Weinberg, Large Dynamical Tide Amplitudes from Small Kicks at Pericenter, arXiv e-prints , arXiv:2306.02382 (2023), arXiv:2306.02382 [astro-ph.EP] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.