Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

General relativistic dynamical tides in binary inspirals, without modes (2311.04075v2)

Published 7 Nov 2023 in gr-qc

Abstract: A neutron star in an inspiraling binary system is tidally deformed by its companion, and the effect leaves a measurable imprint on the emitted gravitational waves. While the tidal interaction falls within the regime of static tides during the early stages of inspiral, a regime of dynamical tides takes over in the later stages. The description of dynamical tides found in the literature makes integral use of a spectral representation of the tidal deformation, in which it is expressed as a sum over the star's normal modes of vibration. This description is deeply rooted in Newtonian fluid mechanics and gravitation, and we point out that considerable obstacles manifest themselves in an extension to general relativity. To remedy this we propose an alternative, mode-less description of dynamical tides that can be formulated in both Newtonian and relativistic mechanics. Our description is based on a time-derivative expansion of the tidal dynamics. The tidal deformation is characterized by two sets of Love numbers: the static Love numbers $k_\ell$ and the dynamic Love numbers $\ddot{k}_\ell$. These are computed here for polytropic stellar models in both Newtonian gravity and general relativity. The time-derivative expansion of the tidal dynamics seems to preclude any attempt to capture an approach to resonance, which occurs when the frequency of the tidal field becomes equal to a normal-mode frequency. To overcome this limitation we propose a pragmatic extension of the time-derivative expansion which does capture an approach to resonance. We demonstrate that with this extension, our formulation of dynamical tides should be just as accurate as the $f$-mode truncation of the mode representation, in which the sum over modes is truncated to a single term involving the star's fundamental mode of vibration.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. E. E. Flanagan and T. Hinderer, Constraining neutron-star tidal love numbers with gravitational-wave detectors, Phys. Rev. D 77, 021502 (2008).
  2. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Gw170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101 (2017).
  3. B. P. Abbott et al. (The LIGO Scientific Collaboration and the Virgo Collaboration), Gw170817: Measurements of neutron star radii and equation of state, Phys. Rev. Lett. 121, 161101 (2018).
  4. T. Narikawa, N. Uchikata, and T. Tanaka, Gravitational-wave constraints on the gwtc-2 events by measuring the tidal deformability and the spin-induced quadrupole moment, Phys. Rev. D 104, 084056 (2021).
  5. P. Landry, R. Essick, and K. Chatziioannou, Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations, Phys. Rev. D 101, 123007 (2020).
  6. K. Chatziioannou, Neutron star tidal deformability and equation-of-state constraints, Gen. Rel. Grav. 52, 109 (2020).
  7. N. Andersson and P. Pnigouras, The phenomenology of dynamical neutron star tides, M.N.R.A.S. 503, 533 (2021).
  8. A. Passamonti, N. Andersson, and P. Pnigouras, Dynamical tides in neutron stars: the impact of the crust, M.N.R.A.S. 504, 1273 (2021).
  9. A. Passamonti, N. Andersson, and P. Pnigouras, Dynamical tides in superfluid neutron stars, M.N.R.A.S. 514, 1494 (2022).
  10. P. Schmidt and T. Hinderer, Frequency domain model of f𝑓fitalic_f-mode dynamic tides in gravitational waveforms from compact binary inspirals, Phys. Rev. D 100, 021501 (2019).
  11. N. Andersson and W. C. G. Ho, Using gravitational-wave data to constrain dynamical tides in neutron star binaries, Phys. Rev. D 97, 023016 (2018).
  12. N. Williams, G. Pratten, and P. Schmidt, Prospects for distinguishing dynamical tides in inspiralling binary neutron stars with third generation gravitational-wave detectors, Phys. Rev. D 105, 123032 (2022).
  13. G. Pratten, P. Schmidt, and N. Williams, Impact of dynamical tides on the reconstruction of the neutron star equation of state, Phys. Rev. Lett. 129, 081102 (2022).
  14. E. E. Flanagan and E. Racine, Gravitomagnetic resonant excitation of rossby modes in coalescing neutron star binaries, Phys. Rev. D 75, 044001 (2007).
  15. E. Poisson, Gravitomagnetic tidal resonance in neutron-star binary inspirals, Phys. Rev. D 101, 104028 (2020).
  16. P. K. Gupta, J. Steinhoff, and T. Hinderer, Relativistic effective action of dynamical gravitomagnetic tides for slowly rotating neutron stars, Phys. Rev. Res. 3, 013147 (2021).
  17. P. K. Gupta, J. Steinhoff, and T. Hinderer, Effect of dynamical gravitomagnetic tides on measurability of tidal parameters for binary neutron stars using gravitational waves, Phys. Rev. D 108, 124040 (2023).
  18. N. N. Weinberg, Growth rate of the tidal p-mode, g-mode instability in coalescing binary neutron stars, Astrophys. J. 819, 109 (2016).
  19. E. Poisson, Compact body in a tidal environment: New types of relativistic love numbers, and a post-newtonian operational definition for tidally induced multipole moments, Phys. Rev. D 103, 064023 (2021).
  20. S. E. Gralla, On the ambiguity in relativistic tidal deformability, Classical and Quantum Gravity 35, 085002 (2018).
  21. J. L. Friedman, Generic instability of rotating relativistic stars, Commun. Math. Phys. 62, 247 (1978).
  22. J. L. Friedman and N. Stergioulas, Rotating relativistic stars (Cambridge University Press, Cambridge, 2013).
  23. H. R. Beyer and B. G. Schmidt, Newtonian stellar oscillations, Astron. Astrophys. 296, 722 (1995).
  24. K. D. Kokkotas and B. G. Schmidt, Quasi-normal modes of stars and black holes, Living Rev. Relativity 2:2 (1999).
  25. R. A. Brooker and T. W. Olle, Apsidal-Motion Constants for Polytropic Models, M.N.R.A.S. 115, 101 (1955).
  26. D. Lai, Resonant oscillations and tidal heating in coalescing binary neutron stars, Mon. Not. R. Astron. Soc. 270, 611 (1994).
  27. A. Reisenegger and P. Goldreich, Excitation of neutron star normal modes during binary inspiral, Astrophys. J. 426, 688 (1994).
  28. J. E. Vines and E. E. Flanagan, First-post-newtonian quadrupole tidal interactions in binary systems, Phys. Rev. D 88, 024046 (2013).
  29. Q. Henry, G. Faye, and L. Blanchet, Tidal effects in the equations of motion of compact binary systems to next-to-next-to-leading post-newtonian order, Phys. Rev. D 101, 064047 (2020).
  30. T. Binnington and E. Poisson, Relativistic theory of tidal love numbers, Phys. Rev. D 80, 084018 (2009).
  31. X.-H. Zhang, Multipole expansions of the general-relativistic gravitational field of the external universe, Phys. Rev. D 34, 991 (1986).
  32. L. Lindblom, Determining the nuclear equation of state from neutron-star masses and radii, Astrophys. J. 398, 569 (1992).
  33. N. Andersson and P. Pnigouras, Exploring the effective tidal deformability of neutron stars, Phys. Rev. D 101, 083001 (2020).
  34. T. Regge and J. A. Wheeler, Stability of a schwarzschild singularity, Phys. Rev. 108, 1063 (1957).
  35. K. Martel and E. Poisson, Gravitational perturbations of the schwarzschild spacetime: A practical covariant and gauge-invariant formalism, Phys. Rev. D 71, 104003 (2005).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: