Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sampling Electronic Fock States using Determinant Quantum Monte Carlo (2403.18246v2)

Published 27 Mar 2024 in cond-mat.quant-gas and cond-mat.str-el

Abstract: Analog quantum simulation based on ultracold atoms in optical lattices has catalyzed significant breakthroughs in the study of quantum many-body systems. These simulations rely on the statistical sampling of electronic Fock states, which are not easily accessible in classical algorithms. In this work, we modify the determinant quantum Monte Carlo by integrating a Fock-state update mechanism alongside the auxiliary field. This method enables efficient sampling of Fock-state configurations. The Fock-state restrictive sampling scheme further enables the pre-selection of multiple ensembles at no additional computational cost, thereby broadening the scope of simulation to more general systems and models. Employing this method, we analyze static correlations of the Hubbard model up to the fourth order and achieve quantitative agreement with cold-atom experiments. The simulations of dynamical spectroscopies of the Hubbard and Kondo-lattice models further demonstrate the reliability and advantage of this method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. R. White, Density Matrix Formulation for Quantum Renormalization Groups, Phys. Rev. Lett. 69, 2863 (1992).
  2. U. Schollwöck, The Density-Matrix Renormalization Group, Rev. Mod. Phys. 77, 259 (2005).
  3. G. Sugiyama and S. Koonin, Auxiliary field Monte-Carlo for quantum many-body ground states, Ann. Phys. 168, 1 (1986).
  4. R. Blankenbecler, D. Scalapino, and R. Sugar, Monte Carlo Calculations of Coupled Boson-Fermion Systems. I, Phys. Rev. D 24, 2278 (1981).
  5. R. P. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys. 21, 467 (1982).
  6. J. Preskill, Quantum Computing in the NISQ Era and Beyond, Quantum 2, 79 (2018).
  7. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum Simulation, Rev. Mod. Phys. 86, 153 (2014).
  8. I. Bloch, Ultracold Quantum Gases in Optical Lattices, Nat. Phys. 1, 23 (2005).
  9. C. Gross and I. Bloch, Quantum Simulations with Ultracold Atoms in Optical Lattices, Science 357, 995 (2017).
  10. T. Esslinger, Fermi-Hubbard Physics with Atoms in an Optical Lattice, Annu. Rev. Condens. Matter Phys. 1, 129 (2010).
  11. A. J. Ferris and G. Vidal, Perfect Sampling with Unitary Tensor Networks, Phys. Rev. B 85, 165146 (2012).
  12. S. Sachdev, Hole Motion in a Quantum Néel State, Phys. Rev. B 39, 12232 (1989).
  13. G. Martinez and P. Horsch, Spin Polarons in the t-J Model, Phys. Rev. B 44, 317 (1991).
  14. J. Bała, A. Oleś, and J. Zaanen, Spin Polarons in the t-t′normal-′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT-J Model, Phys. Rev. B 52, 4597 (1995).
  15. E. Blomquist and J. Carlström, Unbiased Description of Magnetic Polarons in a Mott Insulator, Commun. Phys. 3, 172 (2020).
  16. C. Zhang, S. Rolston, and S. D. Sarma, Manipulation of Single Neutral Atoms in Optical Lattices, Phys. Rev. A 74, 042316 (2006).
  17. J. Schrieffer, X. Wen, and S. Zhang, Dynamic Spin Fluctuations and the Bag Mechanism of high-Tc𝑐{}_{c}start_FLOATSUBSCRIPT italic_c end_FLOATSUBSCRIPT superconductivity, Phys. Rev. B 39, 11663 (1989).
  18. M. Feldbacher and F. F. Assaad, Efficient Calculation of Imaginary-Time-Displaced Correlation Functions in the Projector Auxiliary-Field Quantum Monte Carlo Algorithm, Phys. Rev. B 63, 073105 (2001).
  19. M. Jarrell and J. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data, Phys. Rep. 269, 133 (1996).
  20. S. Capponi and F. F. Assaad, Spin and Charge Dynamics of the Ferromagnetic and Antiferromagnetic Two-Dimensional Half-Filled Kondo Lattice Model, Phys. Rev. B 63, 155114 (2001).
  21. S. Rombouts and K. Heyde, An Accurate and Efficient Algorithm for the Computation of the Characteristic Polynomial of a General Square Matrix, J. Comput. Phys. 140, 453 (1998).
  22. C. Gilbreth and Y. Alhassid, Stabilizing Canonical-Ensemble Calculations in the Auxiliary-Field Monte Carlo Method, Comput. Phys. Commun. 188, 1 (2015).
  23. C. Gilbreth, S. Jensen, and Y. Alhassid, Reducing the Complexity of Finite-Temperature Auxiliary-Field Quantum Monte Carlo, Comput. Phys. Commun. 264, 107952 (2021).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: