Papers
Topics
Authors
Recent
2000 character limit reached

Team Coordination on Graphs: Problem, Analysis, and Algorithms (2403.15946v3)

Published 23 Mar 2024 in cs.MA

Abstract: Team Coordination on Graphs with Risky Edges (TCGRE) is a recently emerged problem, in which a robot team collectively reduces graph traversal cost through support from one robot to another when the latter traverses a risky edge. Resembling the traditional Multi-Agent Path Finding (MAPF) problem, both classical and learning-based methods have been proposed to solve TCGRE, however, they lacked either computational efficiency or optimality assurance. In this paper, we reformulate TCGRE as a constrained optimization problem and perform a rigorous mathematical analysis. Our theoretical analysis shows the NP-hardness of TCGRE by reduction from the Maximum 3D Matching problem and that efficient decomposition is a key to tackle this combinatorial optimization problem. Furthermore, we design three classes of algorithms to solve TCGRE, i.e., Joint State Graph (JSG) based, coordination based, and receding-horizon sub-team based solutions. Each of these proposed algorithms enjoy different provable optimality and efficiency characteristics that are demonstrated in our extensive experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. J. L. Adler and V. J. Blue, “A cooperative multi-agent transportation management and route guidance system,” Transportation Research Part C: Emerging Technologies, vol. 10, no. 5-6, pp. 433–454, 2002.
  2. Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Distributed multi-agent meta learning for trajectory design in wireless drone networks,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 10, pp. 3177–3192, 2021.
  3. C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of ppo in cooperative, multi-agent games,” 2022.
  4. P. Surynek, “An optimization variant of multi-robot path planning is intractable,” in Proceedings of the AAAI conference on artificial intelligence, vol. 24-1, pp. 1261–1263, 2010.
  5. J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli, and S. Whiteson, “Stabilising experience replay for deep multi-agent reinforcement learning,” in International conference on machine learning, pp. 1146–1155, PMLR, 2017.
  6. J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control using deep reinforcement learning,” in Autonomous Agents and Multiagent Systems: AAMAS 2017 Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017, Revised Selected Papers 16, pp. 66–83, Springer, 2017.
  7. M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-agent pickup and delivery,” in Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2019.
  8. Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-robot coordination,” International Journal of Advanced Robotic Systems, vol. 10, no. 12, p. 399, 2013.
  9. R. Luna and K. E. Bekris, “Efficient and complete centralized multi-robot path planning,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3268–3275, IEEE, 2011.
  10. J. Capitan, M. T. Spaan, L. Merino, and A. Ollero, “Decentralized multi-robot cooperation with auctioned pomdps,” The International Journal of Robotics Research, vol. 32, no. 6, pp. 650–671, 2013.
  11. M. Limbu, Z. Hu, S. Oughourli, X. Wang, X. Xiao, and D. Shishika, “Team coordination on graphs with state-dependent edge costs,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 679–684, IEEE, 2023.
  12. M. Limbu, Z. Hu, X. Wang, D. Shishika, and X. Xiao, “Team coordination on graphs with reinforcement learning,” in 2024 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2024.
  13. G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.
  14. R. Stern, “Multi-agent path finding–an overview,” Artificial Intelligence: 5th RAAI Summer School, Dolgoprudny, Russia, July 4–7, 2019, Tutorial Lectures, pp. 96–115, 2019.
  15. T. Standley, “Finding optimal solutions to cooperative pathfinding problems,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 24-1, pp. 173–178, 2010.
  16. A. Felner, R. Stern, S. Shimony, E. Boyarski, M. Goldenberg, G. Sharon, N. Sturtevant, G. Wagner, and P. Surynek, “Search-based optimal solvers for the multi-agent pathfinding problem: Summary and challenges,” in Proceedings of the International Symposium on Combinatorial Search, vol. 8-1, pp. 29–37, 2017.
  17. M. R. Ryan, “Exploiting subgraph structure in multi-robot path planning,” Journal of Artificial Intelligence Research, vol. 31, pp. 497–542, 2008.
  18. P. Surynek, “Towards optimal cooperative path planning in hard setups through satisfiability solving,” in Pacific Rim international conference on artificial intelligence, pp. 564–576, Springer, 2012.
  19. P. Surynek, “Makespan optimal solving of cooperative path-finding via reductions to propositional satisfiability,” arXiv preprint arXiv:1610.05452, 2016.
  20. J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots on graphs,” in 2013 IEEE International Conference on Robotics and Automation, pp. 3612–3617, IEEE, 2013.
  21. E. Erdem, D. Kisa, U. Oztok, and P. Schüller, “A general formal framework for pathfinding problems with multiple agents,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 27-1, pp. 290–296, 2013.
  22. P. Surynek, A. Felner, R. Stern, and E. Boyarski, “Efficient sat approach to multi-agent path finding under the sum of costs objective,” in Proceedings of the twenty-second european conference on artificial intelligence, pp. 810–818, 2016.
  23. R. Barták, N.-F. Zhou, R. Stern, E. Boyarski, and P. Surynek, “Modeling and solving the multi-agent pathfinding problem in picat,” in 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 959–966, IEEE, 2017.
  24. D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble motion on graphs, the diameter of permutation groups, and applications,” in 25th Annual Symposium onFoundations of Computer Science, 1984., pp. 241–250, 1984.
  25. B. De Wilde, A. W. Ter Mors, and C. Witteveen, “Push and rotate: a complete multi-agent pathfinding algorithm,” Journal of Artificial Intelligence Research, vol. 51, pp. 443–492, 2014.
  26. P. Surynek, “A novel approach to path planning for multiple robots in bi-connected graphs,” in 2009 IEEE International Conference on Robotics and Automation, pp. 3613–3619, IEEE, 2009.
  27. R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald, “Hierarchical a*: Searching abstraction hierarchies efficiently,” in AAAI/IAAI, Vol. 1, pp. 530–535, 1996.
  28. R. E. Korf, “Real-time heuristic search,” Artificial intelligence, vol. 42, no. 2-3, pp. 189–211, 1990.
  29. O. Goldreich, Finding the shortest move-sequence in the graph-generalized 15-puzzle is NP-hard. Springer, 2011.
  30. V. Kann, “Maximum bounded 3-dimensional matching is max snp-complete,” Information Processing Letters, vol. 37, no. 1, pp. 27–35, 1991.
  31. R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.
  32. E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations research, vol. 14, no. 4, pp. 699–719, 1966.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.