Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Fairness-Oriented Reinforcement Learning Approach for the Operation and Control of Shared Micromobility Services

Published 23 Mar 2024 in eess.SY, cs.LG, cs.SY, and cs.CY | (2403.15780v3)

Abstract: As Machine Learning grows in popularity across various fields, equity has become a key focus for the AI community. However, fairness-oriented approaches are still underexplored in smart mobility. Addressing this gap, our study investigates the balance between performance optimization and algorithmic fairness in shared micromobility services providing a novel framework based on Reinforcement Learning. Exploiting Q-learning, the proposed methodology achieves equitable outcomes in terms of the Gini index across different areas characterized by their distance from central hubs. Through vehicle rebalancing, the provided scheme maximizes operator performance while ensuring fairness principles for users, reducing iniquity by up to 85% while only increasing costs by 30% (w.r.t. applying no equity adjustment). A case study with synthetic data validates our insights and highlights the importance of fairness in urban micromobility (source code: https://github.com/mcederle99/FairMSS.git).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.