Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FairST: Equitable Spatial and Temporal Demand Prediction for New Mobility Systems (1907.03827v1)

Published 21 Jun 2019 in cs.CY, cs.AI, cs.LG, and stat.AP

Abstract: Emerging transportation modes, including car-sharing, bike-sharing, and ride-hailing, are transforming urban mobility but have been shown to reinforce socioeconomic inequities. Spatiotemporal demand prediction models for these new mobility regimes must therefore consider fairness as a first-class design requirement. We present FairST, a fairness-aware model for predicting demand for new mobility systems. Our approach utilizes 1D, 2D and 3D convolutions to integrate various urban features and learn the spatial-temporal dynamics of a mobility system, but we include fairness metrics as a form of regularization to make the predictions more equitable across demographic groups. We propose two novel spatiotemporal fairness metrics, a region-based fairness gap (RFG) and an individual-based fairness gap (IFG). Both quantify equity in a spatiotemporal context, but vary by whether demographics are labeled at the region level (RFG) or whether population distribution information is available (IFG). Experimental results on real bike share and ride share datasets demonstrate the effectiveness of the proposed model: FairST not only reduces the fairness gap by more than 80%, but can surprisingly achieve better accuracy than state-of-the-art yet fairness-oblivious methods including LSTMs, ConvLSTMs, and 3D CNN.

Citations (28)

Summary

We haven't generated a summary for this paper yet.