Papers
Topics
Authors
Recent
2000 character limit reached

From loop quantum gravity to cosmology: the two-vertex model (2403.15320v3)

Published 22 Mar 2024 in gr-qc

Abstract: We study the notion of volume and its dynamics in the loop-quantum-gravity truncation known as the two-vertex model. We also show that its U(N)-symmetry reduction provides the old effective dynamics of loop quantum cosmology with an arbitrary perfect barotropic fluid content. A suitable modification of the Poisson bracket structure of the U(N)-symmetric model leads to the loop quantum gravity improved dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge Univ. Press, Nueva York, 2008).
  2. C. Rovelli, Quantum Gravity (Cambridge Univ. Press, UK, 2004).
  3. C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl. Phys. B 442, 593 (1995), arXiv:gr-qc/9411005 .
  4. A. Ashtekar and J. Lewandowski, Quantum Theory of Gravity I: Area Operators, Classical Quantum Gravity 14, A55 (1997), arXiv:gr-qc/9602046 .
  5. A. Ashtekar and P. Singh, Loop Quantum Cosmology: A Status Report, Classical Quantum Gravity 28, 213001 (2011), arXiv:1108.0893 .
  6. M. Bojowald, Loop quantum cosmology, Living Reviews in Relativity 11, 1 (2008).
  7. I. Agullo and P. Singh, Loop Quantum Cosmology: A brief review,  arXiv:1612.01236 .
  8. A. Ashtekar, T. Pawlowski, and P. Singh, Quantum Nature of the Big Bang, Phys. Rev. Lett. 96, 141301 (2006a), arXiv:gr-qc/0602086 .
  9. A. Ashtekar, T. Pawlowski, and P. Singh, Quantum Nature of the Big Bang: Improved dynamics, Phys. Rev. D 74, 084003 (2006b), arXiv:gr-qc/0607039 .
  10. M. Martín-Benito, G. A. Mena Marugán, and T. Pawlowski, Loop quantization of vacuum Bianchi I cosmology, Phys. Rev. D 78, 064008 (2008), arXiv:0804.3157 .
  11. A. Ashtekar and E. Bianchi, A short review of loop quantum gravity, Rep. Prog. Phys. 84, 042001 (2021), arXiv:2104.04394 .
  12. C. Rovelli and F. Vidotto, Stepping out of Homogeneity in Loop Quantum Cosmology, Classical Quantum Gravity 25, 225024 (2008), arXiv:0805.4585 .
  13. E. F. Borja, I. Garay, and F. Vidotto, Learning about quantum gravity with a couple of nodes, SIGMA 8, 015 (2012), arXiv:1110.3020 [gr-qc] .
  14. E. Aranguren, I. Garay, and E. R. Livine, Classical dynamics for loop gravity: The 2-vertex model, Phys. Rev. D 105, 126024 (2022), arXiv:2204.00307 .
  15. E. R. Livine and M. Martín-Benito, Classical Setting and Effective Dynamics for Spinfoam Cosmology, Classical Quantum Gravity 30, 035006 (2013), arXiv:1111.2867 .
  16. E. R. Livine and J. Tambornino, Spinor representation for loop quantum gravity, J. Math. Phys. 53, 012503 (2011), arXiv:1105.3385 .
  17. E. R. Livine and J. Tambornino, Holonomy Operator and Quantization Ambiguities on Spinor Space, Phys. Rev. D 87, 104014 (2013), arXiv:1302.7142 [gr-qc] .
  18. M. Dupuis, S. Speziale, and J. Tambornino, Spinors and Twistors in Loop Gravity and Spin Foams, PoS QGQGS2011, 021 (2011), arXiv:1201.2120 [gr-qc] .
  19. A. D. Aleksandrov, Convex polyhedra (Springer, 2005).
  20. L. Freidel and S. Speziale, Twisted geometries: A geometric parametrization of su(2) phase space, Phys. Rev. D 82, 084040 (2010a), arXiv:1001.2748 .
  21. L. Freidel and S. Speziale, From twistors to twisted geometries, Phys. Rev. D 82, 084041 (2010b), arXiv:1006.0199 .
  22. E. Bianchi, P. Dona, and S. Speziale, Polyhedra in loop quantum gravity, Phys. Rev. D 83, 044035 (2011), arXiv:1009.3402 .
  23. G. Sellaroli, An algorithm to reconstruct convex polyhedra from their face normals and areas arXiv:1712.00825 .
  24. C. Goeller and E. R. Livine, Probing the Shape of Quantum Surfaces: The Quadrupole Moment Operator, Classical Quantum Gravity 35, 215004 (2018), arXiv:1805.08257v1 .
  25. F. Girelli and E. R. Livine, Reconstructing quantum geometry from quantum information: spin networks as harmonic oscillators, Classical Quantum Gravity 22, 3295 (2005), arXiv:gr-qc/0501075 .
  26. T. Regge, General Relativity Without Coordinates, Nuovo Cimento 19, 558 (1961).
  27. B. Dittrich and S. Speziale, Area–angle variables for general relativity, New. J. Phys. 10, 083006 (2008), arXiv:0802.0864 .
  28. C. Rovelli and S. Speziale, Geometry of loop quantum gravity on a graph, Phys. Rev. D 82, 044018 (2010), arXiv:1005.2927 .
  29. G. Immirzi, Quantizing regge calculus, Classical Quantum Gravity 13, 2385 (1996), arXiv:gr-qc/9512040 .
  30. V. Taveras, Corrections to the Friedmann Equations from LQG for a Universe with a Free Scalar Field, Phys. Rev. D 78, 064072 (2008), arXiv:0807.3325 .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 37 likes about this paper.