2000 character limit reached
From loop quantum gravity to cosmology: the two-vertex model (2403.15320v3)
Published 22 Mar 2024 in gr-qc
Abstract: We study the notion of volume and its dynamics in the loop-quantum-gravity truncation known as the two-vertex model. We also show that its U(N)-symmetry reduction provides the old effective dynamics of loop quantum cosmology with an arbitrary perfect barotropic fluid content. A suitable modification of the Poisson bracket structure of the U(N)-symmetric model leads to the loop quantum gravity improved dynamics.
- T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge Univ. Press, Nueva York, 2008).
- C. Rovelli, Quantum Gravity (Cambridge Univ. Press, UK, 2004).
- C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl. Phys. B 442, 593 (1995), arXiv:gr-qc/9411005 .
- A. Ashtekar and J. Lewandowski, Quantum Theory of Gravity I: Area Operators, Classical Quantum Gravity 14, A55 (1997), arXiv:gr-qc/9602046 .
- A. Ashtekar and P. Singh, Loop Quantum Cosmology: A Status Report, Classical Quantum Gravity 28, 213001 (2011), arXiv:1108.0893 .
- M. Bojowald, Loop quantum cosmology, Living Reviews in Relativity 11, 1 (2008).
- I. Agullo and P. Singh, Loop Quantum Cosmology: A brief review, arXiv:1612.01236 .
- A. Ashtekar, T. Pawlowski, and P. Singh, Quantum Nature of the Big Bang, Phys. Rev. Lett. 96, 141301 (2006a), arXiv:gr-qc/0602086 .
- A. Ashtekar, T. Pawlowski, and P. Singh, Quantum Nature of the Big Bang: Improved dynamics, Phys. Rev. D 74, 084003 (2006b), arXiv:gr-qc/0607039 .
- M. Martín-Benito, G. A. Mena Marugán, and T. Pawlowski, Loop quantization of vacuum Bianchi I cosmology, Phys. Rev. D 78, 064008 (2008), arXiv:0804.3157 .
- A. Ashtekar and E. Bianchi, A short review of loop quantum gravity, Rep. Prog. Phys. 84, 042001 (2021), arXiv:2104.04394 .
- C. Rovelli and F. Vidotto, Stepping out of Homogeneity in Loop Quantum Cosmology, Classical Quantum Gravity 25, 225024 (2008), arXiv:0805.4585 .
- E. F. Borja, I. Garay, and F. Vidotto, Learning about quantum gravity with a couple of nodes, SIGMA 8, 015 (2012), arXiv:1110.3020 [gr-qc] .
- E. Aranguren, I. Garay, and E. R. Livine, Classical dynamics for loop gravity: The 2-vertex model, Phys. Rev. D 105, 126024 (2022), arXiv:2204.00307 .
- E. R. Livine and M. Martín-Benito, Classical Setting and Effective Dynamics for Spinfoam Cosmology, Classical Quantum Gravity 30, 035006 (2013), arXiv:1111.2867 .
- E. R. Livine and J. Tambornino, Spinor representation for loop quantum gravity, J. Math. Phys. 53, 012503 (2011), arXiv:1105.3385 .
- E. R. Livine and J. Tambornino, Holonomy Operator and Quantization Ambiguities on Spinor Space, Phys. Rev. D 87, 104014 (2013), arXiv:1302.7142 [gr-qc] .
- M. Dupuis, S. Speziale, and J. Tambornino, Spinors and Twistors in Loop Gravity and Spin Foams, PoS QGQGS2011, 021 (2011), arXiv:1201.2120 [gr-qc] .
- A. D. Aleksandrov, Convex polyhedra (Springer, 2005).
- L. Freidel and S. Speziale, Twisted geometries: A geometric parametrization of su(2) phase space, Phys. Rev. D 82, 084040 (2010a), arXiv:1001.2748 .
- L. Freidel and S. Speziale, From twistors to twisted geometries, Phys. Rev. D 82, 084041 (2010b), arXiv:1006.0199 .
- E. Bianchi, P. Dona, and S. Speziale, Polyhedra in loop quantum gravity, Phys. Rev. D 83, 044035 (2011), arXiv:1009.3402 .
- G. Sellaroli, An algorithm to reconstruct convex polyhedra from their face normals and areas arXiv:1712.00825 .
- C. Goeller and E. R. Livine, Probing the Shape of Quantum Surfaces: The Quadrupole Moment Operator, Classical Quantum Gravity 35, 215004 (2018), arXiv:1805.08257v1 .
- F. Girelli and E. R. Livine, Reconstructing quantum geometry from quantum information: spin networks as harmonic oscillators, Classical Quantum Gravity 22, 3295 (2005), arXiv:gr-qc/0501075 .
- T. Regge, General Relativity Without Coordinates, Nuovo Cimento 19, 558 (1961).
- B. Dittrich and S. Speziale, Area–angle variables for general relativity, New. J. Phys. 10, 083006 (2008), arXiv:0802.0864 .
- C. Rovelli and S. Speziale, Geometry of loop quantum gravity on a graph, Phys. Rev. D 82, 044018 (2010), arXiv:1005.2927 .
- G. Immirzi, Quantizing regge calculus, Classical Quantum Gravity 13, 2385 (1996), arXiv:gr-qc/9512040 .
- V. Taveras, Corrections to the Friedmann Equations from LQG for a Universe with a Free Scalar Field, Phys. Rev. D 78, 064072 (2008), arXiv:0807.3325 .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.