Papers
Topics
Authors
Recent
2000 character limit reached

HyperGALE: ASD Classification via Hypergraph Gated Attention with Learnable Hyperedges (2403.14484v1)

Published 21 Mar 2024 in cs.LG, cs.AI, cs.CV, and cs.NE

Abstract: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by varied social cognitive challenges and repetitive behavioral patterns. Identifying reliable brain imaging-based biomarkers for ASD has been a persistent challenge due to the spectrum's diverse symptomatology. Existing baselines in the field have made significant strides in this direction, yet there remains room for improvement in both performance and interpretability. We propose \emph{HyperGALE}, which builds upon the hypergraph by incorporating learned hyperedges and gated attention mechanisms. This approach has led to substantial improvements in the model's ability to interpret complex brain graph data, offering deeper insights into ASD biomarker characterization. Evaluated on the extensive ABIDE II dataset, \emph{HyperGALE} not only improves interpretability but also demonstrates statistically significant enhancements in key performance metrics compared to both previous baselines and the foundational hypergraph model. The advancement \emph{HyperGALE} brings to ASD research highlights the potential of sophisticated graph-based techniques in neurodevelopmental studies. The source code and implementation instructions are available at GitHub:https://github.com/mehular0ra/HyperGALE.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. J. Maenner et al., “Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, united states, 2020,” MMWR Surveillance Summaries, vol. 72, no. 2, p. 1, 2023.
  2. L. Q. Uddin, K. Supekar, and V. Menon, “Reconceptualizing functional brain connectivity in autism from a developmental perspective,” Frontiers in human neuroscience, vol. 7, p. 458, 2013.
  3. J. S. Nomi and L. Q. Uddin, “Developmental changes in large-scale network connectivity in autism,” NeuroImage: Clinical, vol. 7, pp. 732–741, 2015.
  4. S. M. Smith et al., “Correspondence of the brain’s functional architecture during activation and rest,” Proceedings of the national academy of sciences, vol. 106, no. 31, pp. 13040–13045, 2009.
  5. J. Bathelt, H. M. Geurts, and D. Borsboom, “More than the sum of its parts: Merging network psychometrics and network neuroscience with application in autism,” Network Neuroscience, vol. 6, no. 2, pp. 445–466, 2022.
  6. M. R. Arbabshirani, S. Plis, J. Sui, and V. D. Calhoun, “Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls,” NeuroImage, vol. 145, pp. 137–165, 2017.
  7. Y. Chen, J. Yan, et al., “Adversarial learning based node-edge graph attention networks for autism spectrum disorder identification,” IEEE Transactions on Neural Networks and Learning Systems, p. 1–12, 2024.
  8. T. Eslami, V. Mirjalili, A. Fong, A. R. Laird, and F. Saeed, “Asd-diagnet: a hybrid learning approach for detection of autism spectrum disorder using fmri data,” Frontiers in neuroinformatics, vol. 13, p. 70, 2019.
  9. J. Kawahara et al., “Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment,” NeuroImage, vol. 146, pp. 1038–1049, 2017.
  10. A. Vaswani et al., “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  11. X. Kan, W. Dai, H. Cui, Z. Zhang, Y. Guo, and C. Yang, “Brain network transformer,” Advances in Neural Information Processing Systems, vol. 35, pp. 25586–25599, 2022.
  12. R.-A. Müller, N. Kleinhans, N. Kemmotsu, K. Pierce, and E. Courchesne, “Abnormal variability and distribution of functional maps in autism: an fmri study of visuomotor learning,” American Journal of Psychiatry, vol. 160, no. 10, pp. 1847–1862, 2003.
  13. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
  14. P. Veličković et al., “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
  15. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in neural information processing systems, vol. 30, 2017.
  16. M. Cao, M. Yang, C. Qin, X. Zhu, Y. Chen, J. Wang, and T. Liu, “Using deepgcn to identify the autism spectrum disorder from multi-site resting-state data,” Biomedical Signal Processing and Control, vol. 70, p. 103015, 2021.
  17. A. Kazi, S. Shekarforoush, S. Arvind Krishna, H. Burwinkel, G. Vivar, K. Kortüm, S.-A. Ahmadi, S. Albarqouni, and N. Navab, “Inceptiongcn: receptive field aware graph convolutional network for disease prediction,” in Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, June 2–7, 2019, Proceedings 26, pp. 73–85, Springer, 2019.
  18. D. Yao, M. Liu, M. Wang, C. Lian, J. Wei, L. Sun, J. Sui, and D. Shen, “Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional mri,” in Graph Learning in Medical Imaging: First International Workshop, GLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings 1, pp. 70–78, Springer, 2019.
  19. M. Lostar and I. Rekik, “Deep hypergraph u-net for brain graph embedding and classification,” arXiv preprint arXiv:2008.13118, 2020.
  20. M. Madine, I. Rekik, and N. Werghi, “Diagnosing autism using t1-w mri with multi-kernel learning and hypergraph neural network,” in 2020 IEEE International Conference on Image Processing (ICIP), pp. 438–442, IEEE, 2020.
  21. W. Shao, Y. Peng, C. Zu, M. Wang, D. Zhang, A. D. N. Initiative, et al., “Hypergraph based multi-task feature selection for multimodal classification of alzheimer’s disease,” Computerized Medical Imaging and Graphics, vol. 80, p. 101663, 2020.
  22. M. Liu, J. Zhang, P.-T. Yap, and D. Shen, “View-aligned hypergraph learning for alzheimer’s disease diagnosis with incomplete multi-modality data,” Medical image analysis, vol. 36, pp. 123–134, 2017.
  23. J. Ji, Y. Ren, and M. Lei, “Fc–hat: Hypergraph attention network for functional brain network classification,” Information Sciences, vol. 608, pp. 1301–1316, 2022.
  24. C. Craddock, S. Sikka, B. Cheung, R. Khanuja, S. S. Ghosh, C. Yan, Q. Li, D. Lurie, J. Vogelstein, R. Burns, S. Colcombe, M. Mennes, C. Kelly, A. Di Martino, F. X. Castellanos, and M. Milham, “Towards automated analysis of connectomes: The Configurable Pipeline for the Analysis of Connectomes (C-PAC),” Frontiers in Neuroinformatics, no. 42, 2013.
  25. B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee, “A reproducible evaluation of ants similarity metric performance in brain image registration,” NeuroImage, vol. 54, no. 3, pp. 2033–2044, 2011.
  26. Y. Behzadi, K. Restom, J. Liau, and T. T. Liu, “A component based noise correction method (compcor) for bold and perfusion based fmri,” NeuroImage, vol. 37, no. 1, pp. 90–101, 2007.
  27. A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J. Holmes, S. B. Eickhoff, and B. T. T. Yeo, “Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI,” Cerebral Cortex, vol. 28, no. 9, pp. 3095–3114, 2017.
  28. O. Ledoit and M. Wolf, “A well-conditioned estimator for large-dimensional covariance matrices,” J. Multivar. Anal., vol. 88, p. 365, 2004.
  29. A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, A. Gramfort, B. Thirion, and G. Varoquaux, “Machine learning for neuroimaging with scikit-learn,” Frontiers in neuroinformatics, vol. 8, 2014.
  30. Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural networks,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 3558–3565, 2019.
  31. C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, pp. 273–297, 1995.
  32. L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.
  33. M. Ilse, J. Tomczak, and M. Welling, “Attention-based deep multiple instance learning,” in International conference on machine learning, pp. 2127–2136, PMLR, 2018.
  34. D. Buterez, J. P. Janet, S. J. Kiddle, D. Oglic, and P. Liò, “Graph neural networks with adaptive readouts,” Advances in Neural Information Processing Systems, vol. 35, pp. 19746–19758, 2022.
  35. G. Lee, M. Choe, and K. Shin, “How do hyperedges overlap in real-world hypergraphs?-patterns, measures, and generators,” in Proceedings of the web conference 2021, pp. 3396–3407, 2021.
  36. Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional networks for semi-supervised learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, 2018.
  37. D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the over-smoothing problem for graph neural networks from the topological view,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 3438–3445, 2020.
  38. M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 338–348, 2020.
  39. G. Li, M. Müller, G. Qian, I. C. D. Perez, A. Abualshour, A. K. Thabet, and B. Ghanem, “Deepgcns: Making gcns go as deep as cnns,” IEEE transactions on pattern analysis and machine intelligence, 2021.
  40. R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Janossy pooling: Learning deep permutation-invariant functions for variable-size inputs,” arXiv preprint arXiv:1811.01900, 2018.
  41. U. Alon and E. Yahav, “On the bottleneck of graph neural networks and its practical implications,” International Conference on Learning Representations, 2021.
  42. M. V. Lombardo, L. Eyler, A. Moore, M. Datko, C. Carter Barnes, D. Cha, E. Courchesne, and K. Pierce, “Default mode-visual network hypoconnectivity in an autism subtype with pronounced social visual engagement difficulties,” Elife, vol. 8, p. e47427, 2019.
  43. E. D. Bigler, D. F. Tate, E. S. Neeley, L. J. Wolfson, M. J. Miller, S. A. Rice, H. Cleavinger, C. Anderson, H. Coon, S. Ozonoff, et al., “Temporal lobe, autism, and macrocephaly,” American Journal of Neuroradiology, vol. 24, no. 10, pp. 2066–2076, 2003.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.