Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Impulsive Lorenz semiflows: Physical measures, statistical stability and entropy stability (2403.10909v1)

Published 16 Mar 2024 in math.DS and nlin.CD

Abstract: We study semiflows generated via impulsive perturbations of Lorenz flows. We prove that such semiflows admit a finite number of physical measures. Moreover, if the impulsive perturbation is small enough, we show that the physical measures of the semiflows are close, in the weak* topology, to the unique physical measure of the Lorenz flow. A similar conclusion holds for the entropies associated with the physical measures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. L. M. Abramov. On the entropy of a flow, Dokl. Akad. Nauk SSSR, 128:873–875, 1959.
  2. On the ergodic theory of impulsive semiflows, arXiv:2206.13001, 2022.
  3. The origin and structure of the Lorenz attractor. Dokl. Akad. Nauk SSSR, 234(2):336–339, 1977.
  4. On attracting structurally unstable limit sets of Lorenz attractor type. Trudy Moskov. Mat. Obshch., 44:150–212, 1982.
  5. J. F. Alves. Nonuniformly hyperbolic attractors. Geometric and probabilistic aspects. Springer Monographs in Mathematics. Springer, Cham, 2020.
  6. J. F. Alves and M. Carvalho. Invariant probability measures and non-wandering sets for impulsive semiflows. J. Stat. Phys., 157(6):1097–1113, 2014.
  7. Equilibrium states for impulsive semiflows J. Math. Anal. Appl. 451(2): 839–857, 2017.
  8. A variational principle for impulsive semiflows, J. Differential Equations 259(8):4229–4252, 2015.
  9. Statistical stability of geometric Lorenz attractors. Fund. Math. 224(3):219–231, 2014.
  10. E. M. Bonotto. Flows of characteristic 0+superscript00^{+}0 start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT in impulsive semidynamical systems. J. Math. Anal. Appl., 332(1):81–96, 2007.
  11. E. M. Bonotto and M. Federson. Topological conjugation and asymptotic stability in impulsive semidynamical systems. J. Math. Anal. Appl., 326(2):869–881, 2007.
  12. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. J. Differential Equations, 244(9): 2334–2349, 2008.
  13. On the Lyapunov stability theory for impulsive dynamical systems. Topol. Methods Nonlinear Anal., 53(1):127–150, 2019.
  14. N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete Contin. Dynam. Systems, 5(2):425–448, 1999.
  15. N. Chernov and H.-K. Zhang. Billiards with polynomial mixing rates. Nonlinearity, 18(4):1527–1553, 2005.
  16. N. Chernov and H.-K. Zhang. A family of chaotic billiards with variable mixing rates. Stoch. Dyn., 5(4):535–553, 2005.
  17. K. Ciesielski. On semicontinuity in impulsive dynamical systems. Bull. Pol. Acad. Sci. Math., 52(1):71–80, 2004.
  18. K. Ciesielski. On stability in impulsive dynamical systems. Bull. Pol. Acad. Sci. Math., 52(1):81–91, 2004.
  19. M.F. Demers and C. Liverani. Stability of Statistical Properties in Two-dimensional Piecewise Hyperbolic Maps. Trans. Amer. Math. Soc. 360(9):4777–4814, 2008.
  20. Spectral analysis of hyperbolic systems with singularities. Nonlinearity, 27(3):379–433, 2014.
  21. Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps. Discrete Contin. Dyn. Syst., 40(3):1309–1360, 2020.
  22. Stochastic stability of the classical Lorenz flow under impulsive type forcing. J. Stat. Phys., 181(1):163–211, 2020.
  23. J. Guckenheimer and R. F. Williams. Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math., (50):59–72, 1979.
  24. Invariant manifolds, entropy and billiards; smooth maps with singularities, volume 1222 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.
  25. S. K. Kaul. Stability and asymptotic stability in impulsive semidynamical systems. J. Appl. Math. Stochastic Anal., 7(4):509–523, 1994.
  26. E. N. Lorenz. Deterministic non-periodic flow. J. Atmos. Sci., 20:130–141, 1963.
  27. Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. of Math. (2), 160(2):375–432, 2004.
  28. J. B. Pesin. Families of invariant manifolds that correspond to nonzero characteristic exponents. Izv. Akad. Nauk SSSR Ser. Mat., 40(6):1332–1379, 1440, 1976.
  29. Y. B. Pesin. Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergodic Theory Dynam. Systems, 12(1):123–151, 1992.
  30. E.A. Sataev. Invariant measures for hyperbolic mappings with singularities. Russian Math. Surveys, 47(1):191–251, 1992.
  31. E. A. Sataev. Gibbs measures for one-dimensional attractors of hyperbolic mappings with singularities. Izv. Ross. Akad. Nauk Ser. Mat., 56(6):1328–1344, 1992.
  32. W. Tucker. The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math., 328(12):1197–1202, 1999.
  33. L.-S. Young. Bowen-Ruelle measures for certain piecewise hyperbolic maps. Trans. Amer. Math. Soc., 287(1):41–48, 1985.
  34. L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2), 147(3):585–650, 1998.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: