Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Fairness in Credit Lending Models using Subgroup Threshold Optimization (2403.10652v1)

Published 15 Mar 2024 in cs.LG and q-fin.RM

Abstract: In an effort to improve the accuracy of credit lending decisions, many financial intuitions are now using predictions from machine learning models. While such predictions enjoy many advantages, recent research has shown that the predictions have the potential to be biased and unfair towards certain subgroups of the population. To combat this, several techniques have been introduced to help remove the bias and improve the overall fairness of the predictions. We introduce a new fairness technique, called \textit{Subgroup Threshold Optimizer} (\textit{STO}), that does not require any alternations to the input training data nor does it require any changes to the underlying machine learning algorithm, and thus can be used with any existing machine learning pipeline. STO works by optimizing the classification thresholds for individual subgroups in order to minimize the overall discrimination score between them. Our experiments on a real-world credit lending dataset show that STO can reduce gender discrimination by over 90\%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Cecilia Ying (1 paper)
  2. Stephen Thomas (16 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com