Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Neural Erosion: Emulating Controlled Neurodegeneration and Aging in AI Systems (2403.10596v1)

Published 15 Mar 2024 in cs.CL, cs.AI, and q-bio.NC

Abstract: Creating controlled methods to simulate neurodegeneration in AI is crucial for applications that emulate brain function decline and cognitive disorders. We use IQ tests performed by LLMs and, more specifically, the LLaMA 2 to introduce the concept of ``neural erosion." This deliberate erosion involves ablating synapses or neurons, or adding Gaussian noise during or after training, resulting in a controlled progressive decline in the LLMs' performance. We are able to describe the neurodegeneration in the IQ tests and show that the LLM first loses its mathematical abilities and then its linguistic abilities, while further losing its ability to understand the questions. To the best of our knowledge, this is the first work that models neurodegeneration with text data, compared to other works that operate in the computer vision domain. Finally, we draw similarities between our study and cognitive decline clinical studies involving test subjects. We find that with the application of neurodegenerative methods, LLMs lose abstract thinking abilities, followed by mathematical degradation, and ultimately, a loss in linguistic ability, responding to prompts incoherently. These findings are in accordance with human studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics 36, 193–202 (1980). [2] LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278–2324 (1998). [3] Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997). [4] Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278–2324 (1998). [3] Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997). [4] Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997). [4] Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  2. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278–2324 (1998). [3] Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997). [4] Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997). [4] Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  3. Long short-term memory. Neural computation 9, 1735–1780 (1997). [4] Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  4. Mozer, M. C. The neural network house: An environment hat adapts to its inhabitants. Proc. AAAI Spring Symp. Intelligent Environments 58 (1998). [5] Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Raghavendra, U., Acharya, U. R. & Adeli, H. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  5. Artificial intelligence techniques for automated diagnosis of neurological disorders. European neurology 82, 41–64 (2020). [6] Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  6. Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 (2021). [7] Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Tuladhar, A., Moore, J. A., Ismail, Z. & Forkert, N. D. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  7. Modeling neurodegeneration in silico with deep learning. Frontiers in Neuroinformatics 15, 748370 (2021). [8] Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  8. Moore, J. A. et al. Dementia in convolutional neural networks: Using deep learning models to simulate neurodegeneration of the visual system. Neuroinformatics 21, 45–55 (2023). [9] Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Alexos, A., Panousis, K. P. & Chatzis, S. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  9. Local competition and uncertainty for adversarial robustness in deep learning. arXiv preprint arXiv:2006.10620 (2020). [10] Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  10. Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science 1, 417–446 (2015). [11] Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Khatami, S. G., Mubeen, S. & Hofmann-Apitius, M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  11. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives. Current opinion in neurology 33, 249 (2020). [12] Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Peraza-Goicolea, J. A., Martínez-Montes, E., Aubert, E., Valdés-Hernández, P. A. & Mulet, R. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  12. Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks 123, 52–69 (2020). [13] Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  13. Vanasse, T. J. et al. Brain pathology recapitulates physiology: A network meta-analysis. Communications biology 4, 301 (2021). [14] Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  14. Neural network modeling of memory deterioration in alzheimer’s disease. Neural computation 5, 736–749 (1993). [15] Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Ma, X., Fang, G. & Wang, X. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  15. LLM-pruner: On the structural pruning of large language models. Thirty-seventh Conference on Neural Information Processing Systems (2023). [16] Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  16. A simple and effective pruning approach for large language models. arXiv preprint arXiv:2306.11695 (2023). [17] Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  17. Kim, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1746–1751 (2014). [18] Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  18. Touvron, H. et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023). [19] Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  19. Kazanova, M. Sentiment140 dataset with 1.6 million tweets. https://www.kaggle.com/datasets/kazanova/sentiment140. [20] https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). https://crawling-dugong-7fa.notion.site/LLM-IQ-cfe70674bff34107a4d22e0f68b9cfe3. [21] Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  20. Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011). [22] Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Banovic, S., Zunic, L. J. & Sinanovic, O. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  21. Communication difficulties as a result of dementia. Materia socio-medica 30, 221 (2018). [23] Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018). Mueller, K. D., Koscik, R. L., Hermann, B. P., Johnson, S. C. & Turkstra, L. S. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
  22. Declines in connected language are associated with very early mild cognitive impairment: Results from the wisconsin registry for alzheimer’s prevention. Frontiers in Aging Neuroscience 9, 437 (2018).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper introduces neural erosion, a method to induce controlled cognitive decline in AI systems that mirrors human neurodegeneration.
  • It employs Gaussian noise, synaptic pruning, and neuronal deactivation on Llama-2 to emulate gradual performance declines in sentiment analysis and IQ tests.
  • This approach reveals consistent deterioration in mathematical and linguistic abilities, bridging research in AI resilience and neuroscience.

Neural Erosion: A Methodological Approach to Simulating Neurodegeneration in AI Systems

Introduction

The concept of AI mimicking organic intelligence has been a foundational goal since the inception of the field. Recent efforts have shifted towards not only enhancing AI capabilities but also understanding the implications of intentional degradation, specifically emulating neurodegeneration and aging in AI systems. Alexos et al. introduce an innovative approach titled "neural erosion" to systematically explore this avenue. This methodology encompasses the controlled diminishment of AI functionalities akin to neurodegeneration in humans. The paper presents a paradigm shift by applying these concepts to LLMs, specifically the Llama-2 model, to simulate cognitive decline through text-based evaluations.

Previous works have largely focused on neurodegeneration simulation within the visual domain, using Convolutional Neural Networks (CNNs) to mimic conditions such as Alzheimer's disease. However, Alexos et al.'s exploration diverges significantly by operationalizing neurodegeneration within text-based AI systems. This leap from computer vision to NLP technologies marks a significant contribution, highlighting the versatility and applicability of neural erosion methodologies across different AI modalities.

Proposed Methodologies

At the heart of their approach, the research team delineates various strategies for inducing neural erosion, such as the strategic addition of Gaussian noise during or after the model's training, alongside methods for synaptic pruning and neuronal deactivation. This multifaceted technique positions the Gaussian noise as a critical parameter, controlling the extent of induced neurodegeneration. Notably, the methodology's adaptability is demonstrated through its application in sentiment analysis and IQ testing scenarios, offering a broad spectrum of evaluation frameworks for neurodegenerative simulation.

Experiments and Results

  • Sentiment Analysis: Initial experiments involved sentiment analysis with CNNs, where introducing Gaussian noise resulted in a controlled decrease in model performance. Ablation studies reinforced the conclusion that Gaussian noise effectively simulates neurodegeneration within this context.
  • IQ Test with LLaMA 2: The application of neural erosion methods to the LLaMA 2 model through MENSA-derived IQ tests presents revealing insights. The model exhibited predictable declines in performance under increased noise levels, specifically highlighting a decline in mathematical and linguistic abilities, akin to patterns observed in human cognitive disorders.

Implications and Future Directions

The research underscores significant parallels between the impacts of neurodegenerative methods on AI systems and cognitive decline in humans. For instance, the sequential degradation of mathematical followed by linguistic abilities in LLMs mirrors the progression of many neurocognitive disorders. The practical applications of these findings span from enhancing the realism of AI systems simulating human behavior, advancing security measures against AI exploitation, to potentially offering new pathways for understanding neurodegenerative diseases.

The concept of neural erosion presents an unexplored frontier with vast implications for both AI development and neuroscience. Future work might explore the effects of various degradation methodologies across different AI architectures or explore cross-modal studies to further solidify the understanding of neurodegeneration's computational analogs.

In conclusion, Alexos et al.'s innovative exploration into neural erosion not only broadens the horizon of AI research but also bridges a crucial gap between computational intelligence and biological phenomena. This work paves the way for further interdisciplinary collaborations, aiming to unravel the complexities of both artificial and organic intelligence.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

X Twitter Logo Streamline Icon: https://streamlinehq.com