2000 character limit reached
Note on the second derivative of bounded analytic functions
Published 15 Mar 2024 in math.CV | (2403.10213v1)
Abstract: Assume $z_0$ lies in the open unit disk $\mathbb{D}$ and $g$ is an analytic self-map of $\mathbb{D}$. We will determine the region of values of $g''(z_0)$ in terms of $z_0$, $g(z_0)$ and the hyperbolic derivative of $g$ at $z_0$, and give the form of all the extremal functions. In particular, we obtain a smaller sharp upper bound for $|g''(z_0)|$ than Ruscheweyh's inequality for the case of the second derivative. Moreover, we use a different method to obtain Sz{\'a}sz's inequality, which provides a sharp upper bound for $|g''(z_0)|$ depending only on $|z_0|$.
- Schwarz-Pick type inequalities (Birkhäuser Verlag, Basel, 2009).
- H. T. Kaptanoğlu, Some refined Schwarz-Pick lemmas. Michigan Math. J. 50 (3) (2002), 649–664.
- S.-A. Kim and T. Sugawa, Invariant differential operators associated with a conformal metric. Michigan Math. J. 55 (2) (2007), 459–479.
- O. Szász, Ungleichheitsbeziehungen für die Ableitungen einer Potenzreihe, die eine im Einheitskreise beschränkte Funktion darstellt. Mathematische Zeitschrift 8 (3-4) (1920), 303–309.
- St. Ruscheweyh, Two remarks on bounded analytic functions. Serdica 11 (2) (1985), 200–202.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.