Variability regions for the $n$-th derivative of bounded analytic functions (2408.04030v1)
Abstract: Let $\mathcal{H}$ be the class of all analytic self-maps of the open unit disk $\mathbb{D}$. Denote by $Hn f(z)$ the $n$-th order hyperbolic derivative of $f\in \mathcal H$ at $z\in \mathbb{D}$. For $z_0\in \mathbb{D}$ and $\gamma = (\gamma_0, \gamma_1 , \ldots , \gamma_{n-1}) \in {\mathbb D}{n}$, let ${\mathcal H} (\gamma) = {f \in {\mathcal H} : f (z_0) = \gamma_0,H1f (z_0) = \gamma_1,\ldots ,H{n-1}f (z_0) = \gamma_{n-1} }$. In this paper, we determine the variability region $V(z_0, \gamma ) = { f{(n)}(z_0) : f \in {\mathcal H} (\gamma) }$, which can be called ``the generalized Schwarz-Pick Lemma of $n$-th derivative". We then apply the generalized Schwarz-Pick Lemma to establish a $n$-th order Dieudonn\'e's Lemma, which provides an explicit description of the variability region ${h{(n)}(z_0): h\in \mathcal{H}, h(0)=0,h(z_0) =w_0, h'(z_0)=w_1,\ldots, h{(n-1)}(z_0)=w_{n-1}}$ for given $z_0$, $w_0$, $w_1,\dots,w_{n-1}$. Moreover, we determine the form of all extremal functions.