2000 character limit reached
    
  Even quantum advice is unlikely to solve PP (2403.09994v2)
    Published 15 Mar 2024 in cs.CC and quant-ph
  
  Abstract: We give a corrected proof that if PP $\subseteq$ BQP/qpoly, then the Counting Hierarchy collapses, as originally claimed by [Aaronson 2006 arXiv:cs/0504048]. This recovers the related unconditional claim that PP does not have circuits of any fixed size $nk$ even with quantum advice. We do so by proving that YQP*, an oblivious version of (QMA $\cap$ coQMA), is contained in APP, and so is PP-low.
- Scott Aaronson. Oracles are subtle but not malicious. In Proceedings of the 21st Annual IEEE Conference on Computational Complexity, pages 340––354. IEEE Computer Society, 2006. doi:10.1109/CCC.2006.32.
- Scott Aaronson. The learnability of quantum states. Proc. R. Soc. A., 463(2088):3089–3114, 2007. doi:10.1098/rspa.2007.0113.
- Scott Aaronson. Yet more errors in papers, May 2017. Accessed 14 Jan. 2024. URL: https://scottaaronson.blog/?p=3256.
- Computational complexity: a modern approach. Cambridge University Press, 2009.
- A full characterization of quantum advice. SIAM Journal on Computing, 43(3):1131–1183, 2014. doi:10.1137/110856939.
- Quantum polynomial hierarchies: Karp-Lipton, error reduction, and lower bounds, 2024. arXiv:2401.01633.
- Stephen A. Fenner. PP-lowness and a simple definition of AWPP. Theory of Computing Systems, 36:199–212, 2003. doi:10.1007/s00224-002-1089-8.
- Complexity limitations on quantum computation. Journal of Computer and System Sciences, 59(2):240–252, 1999. doi:10.1006/jcss.1999.1651.
- Fixed-polynomial size circuit bounds. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, pages 19–26. IEEE, 2009. doi:10.1109/CCC.2009.21.
- Oblivious classes revisited: Lower bounds and hierarchies. ECCC: TR24-049, 2024. URL: https://eccc.weizmann.ac.il/report/2024/049/.
- Oded Goldreich and Or Meir. Input-oblivious proof systems and a uniform complexity perspective on P/poly. ACM Transactions on Computation Theory, 7(4):1–13, 2015. doi:10.1145/2799645.
- Greg Kuperberg. How hard is it to approximate the Jones polynomial? Theory of Computing, 11(1):183–219, 2015.
- Algebraic methods for interactive proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992. doi:10.1145/146585.146605.
- Lide Li. On the counting functions. PhD thesis, The University of Chicago, 1993. URL: https://www.proquest.com/dissertations-theses/on-counting-functions/docview/304080357/se-2.
- Quantum interpretations of AWPP and APP. Quantum Info. Comput., 16(5–-6):498––514, 2016. doi:10.26421/QIC16.5-6-6.
- Super-polynomial versus half-exponential circuit size in the Exponential Hierarchy. In International Computing and Combinatorics Conference, pages 210–220. Springer, 1999. doi:10.1007/3-540-48686-0_21.
- Quantum Arthur–Merlin games. Computational Complexity, 14:122–152, 2005. doi:10.1007/s00037-005-0194-x.
- N. V. Vinodchandran. A note on the circuit complexity of PP. Theoretical Computer Science, 347(1):415–418, 2005. doi:10.1016/j.tcs.2005.07.032.
- John Watrous. Quantum computational complexity, 2008. arXiv:0804.3401v1.
- Accessed 13 Mar. 2024. URL: https://complexityzoo.net/Complexity_Zoo:B.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.