Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum PCPs: on Adaptivity, Multiple Provers and Reductions to Local Hamiltonians (2403.04841v1)

Published 7 Mar 2024 in quant-ph and cs.CC

Abstract: We define a general formulation of quantum PCPs, which captures adaptivity and multiple unentangled provers, and give a detailed construction of the quantum reduction to a local Hamiltonian with a constant promise gap. The reduction turns out to be a versatile subroutine to prove properties of quantum PCPs, allowing us to show: (i) Non-adaptive quantum PCPs can simulate adaptive quantum PCPs when the number of proof queries is constant. In fact, this can even be shown to hold when the non-adaptive quantum PCP picks the proof indices simply uniformly at random from a subset of all possible index combinations, answering an open question by Aharonov, Arad, Landau and Vazirani (STOC '09). (ii) If the $q$-local Hamiltonian problem with constant promise gap can be solved in $\mathsf{QCMA}$, then $\mathsf{QPCP}[q] \subseteq \mathsf{QCMA}$ for any $q \in O(1)$. (iii) If $\mathsf{QMA}(k)$ has a quantum PCP for any $k \leq \text{poly}(n)$, then $\mathsf{QMA}(2) = \mathsf{QMA}$, connecting two of the longest-standing open problems in quantum complexity theory. Moreover, we also show that there exists (quantum) oracles relative to which certain quantum PCP statements are false. Hence, any attempt to prove the quantum PCP conjecture requires, just as was the case for the classical PCP theorem, (quantumly) non-relativizing techniques.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. The detectability lemma and quantum gap amplification. STOC, pages 417–426, May 2009. arXiv:0811.3412.
  2. Guest column: the quantum PCP conjecture. ACM SIGACT news, 44(2):47--79, June 2013. arXiv:1309.7495.
  3. The power of unentanglement. In 2008 23rd Annual IEEE Conference on Computational Complexity, pages 223--236. IEEE, 2008.
  4. Nlts hamiltonians from good quantum codes. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pages 1090--1096, 2023.
  5. Stoquastic pcp vs. randomness. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1000--1023. IEEE, 2019.
  6. Combinatorial nlts from the overlap gap property. arXiv preprint arXiv:2304.00643, 2023.
  7. The acrobatics of bqp. arXiv preprint arXiv:2111.10409, 2021.
  8. A polynomial quantum algorithm for approximating the jones polynomial. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 427--436, 2006.
  9. Quantum versus classical proofs and advice. In Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07), pages 115--128. IEEE, 2007.
  10. Proof verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–555, May 1998.
  11. Quantum np-a survey. arXiv preprint quant-ph/0210077, 2002.
  12. A lattice problem in quantum np. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages 210--219. IEEE, 2003.
  13. Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM, 45(1):70–122, January 1998.
  14. Strengths and weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510--1523, 1997.
  15. Classical approximation schemes for the ground-state energy of quantum and classical ising spin hamiltonians on planar graphs. Quantum Information and Computation, 9(7-8):701--720, 2009.
  16. Salman Beigi. Np vs qmalog (2). Quantum Information & Computation, 10(1):141--151, 2010.
  17. Qma-hardness of consistency of local density matrices with applications to quantum zero-knowledge. SIAM Journal on Computing, 51(4):1400--1450, 2022.
  18. Product-state approximations to quantum ground states. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 871--880, 2013.
  19. All languages in np have very short quantum proofs. In 2009 Third International Conference on Quantum, Nano and Micro Technologies, pages 34--37. IEEE, 2009.
  20. Covering the sphere by equal spherical balls. Discrete and Computational Geometry: The Goodman-Pollack Festschrift, pages 235--251, 2003.
  21. Hamiltonians whose low-energy states require ω⁢(n)𝜔𝑛\omega(n)italic_ω ( italic_n ) t gates. arXiv preprint arXiv:2310.01347, 2023.
  22. Local hamiltonians with no low-energy stabilizer states. arXiv preprint arXiv:2302.14755, 2023.
  23. Improved Hardness Results for the Guided Local Hamiltonian Problem. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1--32:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl -- Leibniz-Zentrum für Informatik.
  24. Stephen A. Cook. The complexity of theorem-proving procedures. STOC, pages 151--158, May 1971.
  25. André Chailloux and Or Sattath. The complexity of the separable hamiltonian problem. In 2012 IEEE 27th Conference on Computational Complexity, pages 32--41. IEEE, 2012.
  26. Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12–es, June 2007.
  27. Lance Fortnow. The role of relativization in complexity theory. Bulletin of the EATCS, 52:229--243, 1994.
  28. Sevag Gharibian. The 7 faces of quantum np. arXiv preprint arXiv:2310.18010, 2023.
  29. Dequantizing the quantum singular value transformation: hardness and applications to quantum chemistry and the quantum pcp conjecture. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 19--32, 2022.
  30. Alex B. Grilo. Quantum proofs, the local Hamiltonian problem and applications. PhD thesis, Université Sorbonne Paris Cité, April 2018.
  31. Fermionic hamiltonians without trivial low-energy states. arXiv preprint arXiv:2307.13730, 2023.
  32. Testing product states, quantum merlin-arthur games and tensor optimization. Journal of the ACM (JACM), 60(1):1--43, 2013.
  33. Classical and quantum computation. American Mathematical Society, 2002.
  34. Quantum computational complexity of the n-representability problem: Qma complete. Physical review letters, 98(11):110503, 2007.
  35. Leonid A. Levin. Universal sequential search problems. Problemy peredachi informatsii, 9(3):115--116, 1973.
  36. Yi-Kai Liu. Consistency of local density matrices is qma-complete. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques: 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2006 and 10th International Workshop on Randomization and Computation, RANDOM 2006, Barcelona, Spain, August 28-30 2006. Proceedings, pages 438--449. Springer, 2006.
  37. Quantum arthur--merlin games. computational complexity, 14:122--152, 2005.
  38. Guidable local hamiltonian problems with implications to heuristic ansatze state preparation and the quantum pcp conjecture. arXiv preprint arXiv:2302.11578, 2023.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com