Quantum effects in the interaction of low-energy electrons with light (2403.09896v1)
Abstract: The interaction between free electrons and nanoscale optical fields has emerged as a unique platform to investigate ultrafast processes in matter and explore fundamental quantum phenomena. In particular, optically modulated electrons are employed in ultrafast electron microscopy as noninvasive probes that push the limits of spatiotemporal and spectral resolution down to the picometer--attosecond--microelectronvolt range. Electron kinetic energies well above the involved photon energies are commonly employed, rendering the electron--light coupling efficiency low and, thus, only providing limited access to the wealth of quantum nonlinear phenomena underlying the dynamical response of nanostructures. Here, we theoretically investigate electron--light interactions when photons and electrons have comparable energies, revealing strong quantum and recoil effects that include a nonvanishing coupling of surface-scattered electrons to plane waves of light, inelastic electron backscattering from localized optical fields, and strong electron--light coupling under grazing electron diffraction by an illuminated crystal surface. Our results open new vistas in electron--light--matter interactions with promising applications in ultrafast electron microscopy.
- D. J. Flannigan and A. H. Zewail, Acc. Chem. Res. 45, 1828 (2012).
- B. Barwick and A. H. Zewail, ACS Photonics 2, 1391 (2015).
- F. J. García de Abajo and V. Di Giulio, ACS Photonics 8, 945 (2021).
- F. J. García de Abajo and C. Ropers, Phys. Rev. Lett. 130, 246901 (2023).
- J. H. Gaida, H. Lourenço-Martins, M. Sivis, T. Rittmann, A. Feist, F. J. García de Abajo, and C. Ropers, “Attosecond electron microscopy by free-electron homodyne detection,” (2024), Nat. Photon. https://doi.org/10.1038/s41566-024-01380-8, arXiv:2305.03005 .
- T. Bucher, H. Nahari, H. H. Sheinfux, R. Ruimy, A. Niedermayr, R. Dahan, Q. Yan, Y. Adiv, M. Yannai, J. Chen, Y. Kurman, S. T. Park, D. J. Masiel, E. Janzen, J. H. Edgar, F. Carbone, G. Bartal, S. Tsesses, F. H. L. Koppens, G. M. Vanacore, and I. Kaminer, “Coherently amplified ultrafast imaging in a free-electron interferometer,” (2023), arXiv:2305.04877 .
- Y. Morimoto and P. Baum, Nat. Phys. 14, 252 (2018).
- A. Konečná and F. J. García de Abajo, Phys. Rev. Lett. 125, 030801 (2020).
- F. J. García de Abajo and A. Konečná, Phys. Rev. Lett. 126, 123901 (2021).
- D. A. Varshalovich and M. A. D’Yakonov, Sov. Phys. JETP 33, 51 (1971).
- N. Talebi, Adv. Phys. X 3, 1499438 (2018).
- N. Talebi, Phys. Rev. Lett. 125, 080401 (2020).
- Lord Rayleigh, Proc. R. Soc. Lond. A 79, 399 (1907a).
- M. A. M. de Aguiar, Phys. Rev. A 48, 2567 (1993).
- M. Rocca, Surf. Sci. Rep. 22, 1 (1995).
- J. B. Pendry, Low Energy Electron Diffraction (Academic Press, London, 1974).
- J. B. Pendry, in Determination of Surface Structure by LEED, edited by P. M. Marcus and F. Jona (Plenum Press, New York, 1984).
- Lord Rayleigh, Philos. Mag. 14, 60 (1907b).
- F. J. García de Abajo, Rev. Mod. Phys. 79, 1267 (2007).
- P. Francken and C.J.Joachain, J. Opt. Soc. Am. B 7, 554 (1990).
- V. D. E. Arqué López and F. J. García de Abajo, Phys. Rev. Research 4, 013241 (2022).
- E. N. Economou, Green’s Functions in Quantum Physics (Springer, Heidelberg, 2006).
- A. Messiah, Quantum Mechanics (North-Holland, New York, 1966).
- J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Boston, 1994).
- D. M. Wolkow, Z. Phys. 94, 250 (1935).
- F. Salvat and R. Mayol, Comput. Phys. Commun. 62, 65 (1991).
- K. Kambe, Z. Naturforsch. A 22, 322 (1967).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.