Compactness of quantics tensor train representations of local imaginary-time propagators (2403.09161v2)
Abstract: Space-time dependence of imaginary-time propagators, vital for \textit{ab initio} and many-body calculations based on quantum field theories, has been revealed to be compressible using Quantum Tensor Trains (QTTs) [Phys. Rev. X {\bf 13}, 021015 (2023)]. However, the impact of system parameters, like temperature, on data size remains underexplored. This paper provides a comprehensive numerical analysis of the compactness of local imaginary-time propagators in QTT for one-time/-frequency objects and two-time/-frequency objects, considering truncation in terms of the Frobenius and maximum norms. To study worst-case scenarios, we employ random pole models, where the number of poles grows logarithmically with the inverse temperature and coefficients are random. The Green's functions generated by these models are expected to be more difficult to compress than those from physical systems. The numerical analysis reveals that these propagators are highly compressible in QTT, outperforming the state-of-the-art approaches such as intermediate representation and discrete Lehmann representation. For one-time/-frequency objects and two-time/-frequency objects, the bond dimensions saturate at low temperatures, especially for truncation in terms of the Frobenius norm. We provide counting-number arguments for the saturation of bond dimensions for the one-time/-frequency objects, while the origin of this saturation for two-time/-frequency objects remains to be clarified. This paper's findings highlight the critical need for further research on the selection of truncation methods, tolerance levels, and the choice between imaginary-time and imaginary-frequency representations in practical applications.
- G. D. Mahan, Many-Particle Physics, Kluwer Academic/Plenum Publishers, New York, 10.1007/978-1-4757-5714-9 (2000).
- Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory, Rev. Mod. Phys. 90(2), 025003 (2018), 10.1103/revmodphys.90.025003.
- S. Iskakov, H. Terletska and E. Gull, Momentum-space cluster dual-fermion method, Phys. Rev. B Condens. Matter 97(12), 125114 (2018), 10.1103/PhysRevB.97.125114.
- J. Vučičević, T. Ayral and O. Parcollet, TRILEX and GW +EDMFT approach to d -wave superconductivity in the hubbard model, Phys. Rev. B Condens. Matter 96(10) (2017), 10.1103/physrevb.96.104504.
- Strongly correlated superconductivity with long-range spatial fluctuations, J. Phys. Mater. 5(3), 034005 (2022), 10.1088/2515-7639/ac7e6d.
- Truncated unity parquet solver, Phys. Rev. B 101, 155104 (2020), 10.1103/PhysRevB.101.155104.
- Orthogonal polynomial representation of imaginary-time Green’s functions, Phys. Rev. B: Condens. Matter Mater. Phys. 84(7), 075145 (2011), 10.1103/physrevb.84.075145.
- Compressing green’s function using intermediate representation between imaginary-time and real-frequency domains, Phys. Rev. B 96, 035147 (2017), 10.1103/PhysRevB.96.035147.
- M. Kaltak and G. Kresse, Minimax isometry method: A compressive sensing approach for matsubara summation in many-body perturbation theory, Phys. Rev. B Condens. Matter 101(20), 205145 (2020), 10.1103/physrevb.101.205145.
- J. Kaye, K. Chen and O. Parcollet, Discrete lehmann representation of imaginary time green’s functions, Phys. Rev. B Condens. Matter 105(23), 235115 (2022), 10.1103/PhysRevB.105.235115.
- Efficient ab initio many-body calculations based on sparse modeling of matsubara green’s function, SciPost Phys. Lect. Notes (63), 063 (2022), 10.21468/scipostphyslectnotes.63.
- Overcomplete compact representation of two-particle Green’s functions, Phys. Rev. B 97(20), 205111 (2018), 10.1103/physrevb.97.205111.
- F. B. Kugler, S.-S. B. Lee and J. von Delft, Multipoint correlation functions: Spectral representation and numerical evaluation, Phys. Rev. X 11(4), 041006 (2021), 10.1103/PhysRevX.11.041006.
- S.-S. B. Lee, F. B. Kugler and J. von Delft, Computing local multipoint correlators using the numerical renormalization group, Phys. Rev. X 11(4), 041007 (2021), 10.1103/PhysRevX.11.041007.
- M. Wallerberger, H. Shinaoka and A. Kauch, Solving the Bethe-Salpeter equation with exponential convergence, Phys. Rev. Research 3(3), 033168 (2021), 10.1103/PhysRevResearch.3.033168.
- B. N. Khoromskij, O(dlogN)𝑂𝑑𝑁O(d\log N)italic_O ( italic_d roman_log italic_N )-quantics approximation of n-d tensors in high-dimensional numerical modeling, Constr. Approx. 34(2), 257 (2011), 10.1007/s00365-011-9131-1.
- I. V. Oseledets, Approximation of matrices with logarithmic number of parameters, Doklady Math. 80(2), 653 (2009), 10.1134/S1064562409050056.
- B. N. Khoromskij, Tensor Numerical Methods in Scientific Computing, vol. 19 of Radon Series on Computational and Applied Mathematics, De Gruyter, Berlin, Boston, first edn., 10.1515/9783110365917 (2018).
- Multiscale Space-Time ansatz for correlation functions of quantum systems based on quantics tensor trains, Phys. Rev. X 13(2), 021015 (2023), 10.1103/PhysRevX.13.021015.
- I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl. 432(1), 70 (2010), 10.1016/j.laa.2009.07.024.
- S. Dolgov and D. Savostyanov, Parallel cross interpolation for high-precision calculation of high-dimensional integrals, Comput. Phys. Commun. 246, 106869 (2020), 10.1016/j.cpc.2019.106869.
- Learning feynman diagrams with tensor trains, Phys. Rev. X 12(4), 041018 (2022), 10.1103/PhysRevX.12.041018.
- In preparation (2024).
- U. Schollwock, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326(1), 96 (2011), 10.1016/j.aop.2010.09.012.
- Quantics tensor cross interpolation for High-Resolution parsimonious representations of multivariate functions, Phys. Rev. Lett. 132(5), 056501 (2024), 10.1103/PhysRevLett.132.056501.
- N. Chikano, J. Otsuki and H. Shinaoka, Performance analysis of a physically constructed orthogonal representation of imaginary-time Green’s function, Phys. Rev. B: Condens. Matter Mater. Phys. 98(3), 035104 (2018), 10.1103/physrevb.98.035104.
- S. Dolgov, B. Khoromskij and D. Savostyanov, Superfast fourier transform using QTT approximation, J. Fourier Anal. Appl. 18(5), 915 (2012), 10.1007/s00041-012-9227-4.
- J. Chen, E. M. Stoudenmire and S. R. White, Quantum fourier transform has small entanglement, PRX Quantum 4(4), 040318 (2023), 10.1103/PRXQuantum.4.040318.
- Sparse sampling approach to efficient ab initio calculations at finite temperature, Phys. Rev. B 101(3), 035144 (2020), 10.1103/physrevb.101.035144.
- F. Krien and A. Valli, Parquetlike equations for the hedin three-leg vertex, Phys. Rev. B Condens. Matter 100(24), 245147 (2019), 10.1103/PhysRevB.100.245147.
- Boson-exchange parquet solver for dual fermions, Phys. Rev. B Condens. Matter 102(19), 195131 (2020), 10.1103/PhysRevB.102.195131.
- F. Krien, A. Kauch and K. Held, Tiling with triangles: parquet and gwγ𝛾\gammaitalic_γ methods unified, Phys. Rev. Res. 3(1), 013149 (2021), 10.1103/PhysRevResearch.3.013149.
- F. Krien and A. Kauch, The plain and simple parquet approximation: single-and multi-boson exchange in the two-dimensional hubbard model, Eur. Phys. J. B 95(4), 69 (2022), 10.1140/epjb/s10051-022-00329-6.
- sparse-ir: Optimal compression and sparse sampling of many-body propagators, SoftwareX 21, 101266 (2023), 10.1016/j.softx.2022.101266.
- M. Fishman, S. White and E. Stoudenmire, The ITensor software library for tensor network calculations, SciPost Phys. Codebases (4) (2022), 10.21468/scipostphyscodeb.4.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.