Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 68 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Low-rank quantics tensor train representations of Feynman diagrams for multiorbital electron-phonon models (2405.06440v3)

Published 10 May 2024 in cond-mat.str-el

Abstract: Feynman diagrams are an essential tool for simulating strongly correlated electron systems. However, stochastic quantum Monte Carlo (QMC) sampling suffers from the sign problem, e.g., when solving a multiorbital quantum impurity model. Recently, two approaches have been proposed for efficient numerical treatment of Feynman diagrams: Tensor Cross Interpolation (TCI) for replacing the stochastic sampling and the Quantics Tensor Train (QTT) representation for compressing space-time dependence. Combining these approaches, we find low-rank structures in weak-coupling Feynman diagrams for a multiorbital electron-phonon model and demonstrate their efficient numerical integrations with exponential resolution in time and exponential convergence of error with respect to computational cost.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. G. D. Mahan, Many-Particle Physics (Kluwer Academic/Plenum Publishers, New York, 2000).
  2. J. E. Hirsch and R. M. Fye, Monte carlo method for magnetic impurities in metals, Physical review letters 56, 2521 (1986).
  3. N. Prokof’ev and B. Svistunov, Bold diagrammatic monte carlo technique: When the sign problem is welcome, Physical review letters 99, 250201 (2007).
  4. G. Pan and Z. Y. Meng, The sign problem in quantum monte carlo simulations, in Encyclopedia of Condensed Matter Physics (Elsevier, 2024) p. 879–893.
  5. C. T. Hann, E. Huffman, and S. Chandrasekharan, Solution to the sign problem in a frustrated quantum impurity model, Annals of Physics 376, 63 (2017).
  6. R. Mondaini, S. Tarat, and R. T. Scalettar, Quantum critical points and the sign problem, Science 375, 418 (2022).
  7. E. Ye and N. F. G. Loureiro, Quantum-inspired method for solving the Vlasov-Poisson equations, Phys. Rev. E 106, 035208 (2022).
  8. Y. Kaga, P. Werner, and S. Hoshino, Eliashberg theory of the jahn-teller-hubbard model, Physical Review B 105, 214516 (2022).
  9. I. Oseledets, Approximation of matrices with logarithmic number of parameters, in Doklady Mathematics, Vol. 80 (Springer, 2009) pp. 653–654.
  10. B. N. Khoromskij, O (d log n)-quantics approximation of n-d tensors in high-dimensional numerical modeling, Constructive Approximation 34, 257 (2011).
  11. H. Takahashi, R. Sakurai, and H. Shinaoka, Compactness of quantics tensor train representations of local imaginary-time propagators (2024), arXiv:2403.09161 [cond-mat.str-el] .
  12. See Supplemental Material at URL-will-be-inserted-by-publisher for the numerical details of our simulations.
  13. We must include the factor β2superscript𝛽2\beta^{2}italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT due to changing variables: x′=τ′/βsuperscript𝑥′superscript𝜏′𝛽x^{\prime}=\tau^{\prime}/\betaitalic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_τ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_β and x′′=τ′′/βsuperscript𝑥′′superscript𝜏′′𝛽x^{\prime\prime}=\tau^{\prime\prime}/\betaitalic_x start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT = italic_τ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_β.
  14. J. Kaye, K. Chen, and O. Parcollet, Discrete lehmann representation of imaginary time green’s functions, Phys. Rev. B Condens. Matter 105, 235115 (2022).
  15. J. Kaye, H. U. R. Strand, and D. Golež, Decomposing imaginary time feynman diagrams using separable basis functions: Anderson impurity model strong coupling expansion (2023), arXiv:2307.08566 [cond-mat.str-el] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com