Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient Matching Boundary Conditions of Two-dimensional Honeycomb Lattice for Atomic Simulations

Published 7 Feb 2024 in math.NA, cond-mat.mtrl-sci, and cs.NA | (2403.08809v1)

Abstract: In this paper, we design a series of matching boundary conditions for a two-dimensional compound honeycomb lattice, which has an explicit and simple form, high computing efficiency and good effectiveness of suppressing boundary reflections. First, we formulate the dynamic equations and calculate the dispersion relation for the harmonic honeycomb lattice, then symmetrically choose specific atoms near the boundary to design different forms of matching boundary conditions. The boundary coefficients are determined by matching a residual function at some selected wavenumbers. Several atomic simulations are performed to test the effectiveness of matching boundary conditions in the example of a harmonic honeycomb lattice and a nonlinear honeycomb lattice with the FPU-$\beta$ potential. Numerical results illustrate that low-order matching boundary conditions mainly treat long waves, while the high-order matching boundary conditions can efficiently suppress short waves and long waves simultaneously. Decaying kinetic energy curves indicate the stability of matching boundary conditions in numerical simulations.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.