On the Stochasticity of Aerosol-Cloud Interactions within a Data-driven Framework (2403.08702v1)
Abstract: Aerosol-cloud interactions (ACI) pose the largest uncertainty for climate projections. Among many challenges of understanding ACI, the question of whether ACI is deterministic or stochastic has not been explicitly formulated and asked. Here we attempt to answer this question by predicting cloud droplet number concentration Nc from aerosol number concentration Na and ambient conditions. We use aerosol properties, vertical velocity fluctuation w', and meteorological states (temperature T and water vapor mixing ratio q_v) from the ACTIVATE field observations (2020 to 2022) as predictor variables to estimate Nc. We show that the climatological Nc can be successfully predicted using a machine learning model despite the strongly nonlinear and multi-scale nature of ACI. However, the observation-trained machine learning model fails to predict Nc in individual cases while it successfully predicts Nc of randomly selected data points that cover a broad spatiotemporal scale, suggesting the stochastic nature of ACI at fine spatiotemporal scales.
- \APACinsertmetastarAlbrecht1989AerosolsCloudiness{APACrefauthors}Albrecht, B\BPBIA. \APACrefYearMonthDay1989. \BBOQ\APACrefatitleAerosols, Cloud Microphysics, and Fractional Cloudiness Aerosols, Cloud Microphysics, and Fractional Cloudiness.\BBCQ \APACjournalVolNumPagesScience24549231227–1230. {APACrefURL} https://www.science.org/doi/abs/10.1126/science.245.4923.1227 {APACrefDOI} 10.1126/science.245.4923.1227 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleUsing machine learning to derive cloud condensation nuclei number concentrations from commonly available measurements Using machine learning to derive cloud condensation nuclei number concentrations from commonly available measurements.\BBCQ \APACjournalVolNumPagesAtmospheric Chemistry and Physics2021. {APACrefDOI} 10.5194/acp-20-12853-2020 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleBounding Global Aerosol Radiative Forcing of Climate Change Bounding Global Aerosol Radiative Forcing of Climate Change.\BBCQ \APACjournalVolNumPagesReviews of Geophysics581e2019RG000660. {APACrefURL} https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019RG000660 {APACrefDOI} https://doi.org/10.1029/2019RG000660 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleQuantifying Progress Across Different CMIP Phases With the ESMValTool Quantifying Progress Across Different CMIP Phases With the ESMValTool.\BBCQ \APACjournalVolNumPagesJournal of Geophysical Research: Atmospheres12521. {APACrefDOI} 10.1029/2019JD032321 \PrintBackRefs\CurrentBib
- \APACinsertmetastarBreiman2001Random5-32.{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleRandom forests. Machine learning, 45(1), 5-32. Random forests. Machine learning, 45(1), 5-32.\BBCQ \APACjournalVolNumPagesLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)12343 LNCS. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAircraft Observations of Turbulence in Cloudy and Cloud-Free Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for the Earth System Model Evaluation and Development Aircraft Observations of Turbulence in Cloudy and Cloud-Free Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for the Earth System Model Evaluation and Development.\BBCQ \APACjournalVolNumPagesJournal of Geophysical Research: Atmospheres12719. {APACrefDOI} 10.1029/2022JD036480 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleUsing supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset.\BBCQ \APACjournalVolNumPagesScientific Data81. {APACrefDOI} 10.1038/s41597-021-01016-4 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMachine learning reveals climate forcing from aerosols is dominated by increased cloud cover Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover.\BBCQ \APACjournalVolNumPagesNature Geoscience158. {APACrefDOI} 10.1038/s41561-022-00991-6 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAn Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry.\BBCQ \APACjournalVolNumPagesJournal of Geophysical Research: Atmospheres1264. {APACrefDOI} 10.1029/2020JD032592 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleDimethylamine in cloud water: a case study over the northwest Atlantic Ocean Dimethylamine in cloud water: a case study over the northwest Atlantic Ocean.\BBCQ \APACjournalVolNumPagesEnvironmental Science: Atmospheres26. {APACrefDOI} 10.1039/d2ea00117a \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleOrganic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data.\BBCQ \APACjournalVolNumPagesAtmospheric Chemistry and Physics2220. {APACrefDOI} 10.5194/acp-22-13897-2022 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleCloud drop number concentrations over the western north atlantic ocean: Seasonal cycle, aerosol interrelationships, and other influential factors Cloud drop number concentrations over the western north atlantic ocean: Seasonal cycle, aerosol interrelationships, and other influential factors.\BBCQ \APACjournalVolNumPagesAtmospheric Chemistry and Physics2113. {APACrefDOI} 10.5194/acp-21-10499-2021 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20087. \BBOQ\APACrefatitleFast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign.\BBCQ \APACjournalVolNumPagesAtmospheric Chemistry and Physics8144027–4048. {APACrefURL} https://acp.copernicus.org/articles/8/4027/2008/ {APACrefDOI} 10.5194/acp-8-4027-2008 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleChallenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.\BBCQ \APACjournalVolNumPagesProceedings of the National Academy of Sciences113215804–5811. {APACrefURL} https://www.pnas.org/doi/abs/10.1073/pnas.1514036113 {APACrefDOI} 10.1073/pnas.1514036113 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20131. \BBOQ\APACrefatitleGrowth of cloud droplets in a turbulent environment Growth of cloud droplets in a turbulent environment.\BBCQ \APACjournalVolNumPagesAnnual Review of Fluid Mechanics45293–324. {APACrefDOI} 10.1146/annurev-fluid-011212-140750 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20226. \BBOQ\APACrefatitleSeasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic.\BBCQ \APACjournalVolNumPagesAtmospheric Chemistry and Physics22128299–8319. {APACrefURL} https://acp.copernicus.org/articles/22/8299/2022/ {APACrefDOI} 10.5194/acp-22-8299-2022 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleOverview and statistical analysis of boundary layer clouds and precipitation over the western North-Atlantic Ocean Overview and statistical analysis of boundary layer clouds and precipitation over the western North-Atlantic Ocean.\BBCQ \APACjournalVolNumPagesEGUsphere20231–29. {APACrefURL} https://egusphere.copernicus.org/preprints/2023/egusphere-2023-898/ {APACrefDOI} 10.5194/egusphere-2023-898 \PrintBackRefs\CurrentBib
- \APACinsertmetastarKohler1936TheDroplets{APACrefauthors}Köhler, H. \APACrefYearMonthDay1936. \BBOQ\APACrefatitleThe nucleus in and the growth of hygroscopic droplets The nucleus in and the growth of hygroscopic droplets.\BBCQ \APACjournalVolNumPagesTransactions of the Faraday Society32. {APACrefDOI} 10.1039/TF9363201152 \PrintBackRefs\CurrentBib
- \APACinsertmetastarLi2018DropletStudy{APACrefauthors}Li, X\BHBIY. \APACrefYear2018. \APACrefbtitleDroplet growth in atmospheric turbulence : A direct numerical simulation study Droplet growth in atmospheric turbulence : A direct numerical simulation study \APACtypeAddressSchool\BPhDStockholm. {APACrefURL} http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-158537http://su.diva-portal.org/smash/get/diva2:1237428/FULLTEXT01.pdfhttp://su.diva-portal.org/smash/get/diva2:1237428/PREVIEW01.jpg \PrintBackRefs\CurrentBib
- \APACinsertmetastarLi2023Xiang-yu/WRF-LASSO:WRF-LASSO{APACrefauthors}Li, X\BHBIY. \APACrefYearMonthDay202312. \APACrefbtitlexiang-yu/WRF-LASSO: WRF-LASSO. xiang-yu/WRF-LASSO: WRF-LASSO. \APACaddressPublisher[Software] Zenodo. {APACrefURL} https://doi.org/10.5281/zenodo.10421287 {APACrefDOI} 10.5281/zenodo.10421287 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleCondensational and Collisional Growth of Cloud Droplets in a Turbulent Environment Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment.\BBCQ \APACjournalVolNumPagesJournal of the Atmospheric Sciences771337–353. {APACrefURL} https://journals.ametsoc.org/view/journals/atsc/77/1/jas-d-19-0107.1.xml {APACrefDOI} https://doi.org/10.1175/JAS-D-19-0107.1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20224. \BBOQ\APACrefatitleCollision fluctuations of lucky droplets with superdroplets Collision fluctuations of lucky droplets with superdroplets.\BBCQ \APACjournalVolNumPagesJournal of the Atmospheric Sciences-1aop. {APACrefURL} https://journals.ametsoc.org/view/journals/atsc/aop/JAS-D-20-0371.1/JAS-D-20-0371.1.xml {APACrefDOI} 10.1175/JAS-D-20-0371.1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20221. \BBOQ\APACrefatitleLarge-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings.\BBCQ \APACjournalVolNumPagesJournal of the Atmospheric Sciences79173–100. {APACrefURL} https://journals.ametsoc.org/view/journals/atsc/79/1/JAS-D-21-0123.1.xml {APACrefDOI} 10.1175/JAS-D-21-0123.1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20231. \BBOQ\APACrefatitleLarge-Eddy Simulations of Marine Boundary-Layer Clouds Associated with Cold-Air Outbreaks During the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction Large-Eddy Simulations of Marine Boundary-Layer Clouds Associated with Cold-Air Outbreaks During the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction.\BBCQ \APACjournalVolNumPagesJournal of the Atmospheric Sciences8041025–1045. {APACrefURL} https://journals.ametsoc.org/view/journals/atsc/aop/JAS-D-21-0324.1/JAS-D-21-0324.1.xml {APACrefDOI} 10.1175/JAS-D-21-0324.1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleProcess Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic.\BBCQ \APACjournalVolNumPagesAuthorea Preprints. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleEarly warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction.\BBCQ \APACjournalVolNumPagesNature Communications131. {APACrefDOI} 10.1038/s41467-022-32704-3 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20216. \BBOQ\APACrefatitleSizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index.\BBCQ \APACjournalVolNumPagesAtmospheric Measurement Techniques1464517–4542. {APACrefURL} https://amt.copernicus.org/articles/14/4517/2021/ {APACrefDOI} 10.5194/amt-14-4517-2021 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20093. \BBOQ\APACrefatitleImpact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes.\BBCQ \APACjournalVolNumPagesMonthly Weather Review1373991–1007. {APACrefURL} http://journals.ametsoc.org/doi/10.1175/2008MWR2556.1 {APACrefDOI} 10.1175/2008MWR2556.1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20208. \BBOQ\APACrefatitleConfronting the Challenge of Modeling Cloud and Precipitation Microphysics Confronting the Challenge of Modeling Cloud and Precipitation Microphysics.\BBCQ \APACjournalVolNumPagesJournal of Advances in Modeling Earth Systems128. {APACrefURL} https://onlinelibrary.wiley.com/doi/10.1029/2019MS001689 {APACrefDOI} 10.1029/2019MS001689 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMachine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloud-Forming Particles Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloud-Forming Particles.\BBCQ \APACjournalVolNumPagesGeophysical Research Letters4821. {APACrefDOI} 10.1029/2021GL094133 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay202110. \BBOQ\APACrefatitleEvaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign.\BBCQ \APACjournalVolNumPagesAtmospheric Measurement Techniques14106633–6646. {APACrefURL} https://amt.copernicus.org/articles/14/6633/2021/ {APACrefDOI} 10.5194/amt-14-6633-2021 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleScikit-learn: Machine learning in Python Scikit-learn: Machine learning in Python.\BBCQ \APACjournalVolNumPagesJournal of Machine Learning Research12. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleImproving our fundamental understanding of the role of aerosol-cloud interactions in the climate system Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.\BBCQ \APACjournalVolNumPagesProceedings of the National Academy of Sciences113215781–5790. {APACrefURL} https://www.pnas.org/doi/abs/10.1073/pnas.1514043113 {APACrefDOI} 10.1073/pnas.1514043113 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleA description of the advanced research WRF model version 4 A description of the advanced research WRF model version 4.\BBCQ \APACjournalVolNumPagesNational Center for Atmospheric Research: Boulder, CO, USA145145550. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSpatially-coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: The NASA ACTIVATE dataset Spatially-coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: The NASA ACTIVATE dataset.\BBCQ \APACjournalVolNumPagesEarth System Science Data Discussions20231–79. {APACrefURL} https://essd.copernicus.org/preprints/essd-2023-109/ {APACrefDOI} 10.5194/essd-2023-109 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleAerosol–cloud–meteorology interaction airborne field investigations: Using lessons learned from the U.S. West coast in the design of activate off the U.S. East Coast Aerosol–cloud–meteorology interaction airborne field investigations: Using lessons learned from the U.S. West coast in the design of activate off the U.S. East Coast.\BBCQ \APACjournalVolNumPagesBulletin of the American Meteorological Society1008. {APACrefDOI} 10.1175/BAMS-D-18-0100.1 \PrintBackRefs\CurrentBib
- \APACinsertmetastarTeam2020AerosolDataset{APACrefauthors}Team, A\BPBIS. \APACrefYearMonthDay2020. \APACrefbtitleAerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment [Dataset]. Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment [Dataset]. {APACrefURL} https://asdc.larc.nasa.gov/project/ACTIVATE {APACrefDOI} 10.5067/SUBORBITAL/ACTIVATE/DATA001 \PrintBackRefs\CurrentBib
- \APACinsertmetastarTwomey1974PollutionAlbedo{APACrefauthors}Twomey, S. \APACrefYearMonthDay197412. \BBOQ\APACrefatitlePollution and the planetary albedo Pollution and the planetary albedo.\BBCQ \APACjournalVolNumPagesAtmospheric Environment (1967)8121251–1256. {APACrefURL} https://linkinghub.elsevier.com/retrieve/pii/0004698174900043 {APACrefDOI} 10.1016/0004-6981(74)90004-3 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2009. \BBOQ\APACrefatitleEvaluation of Scalar Advection Schemes in the Advanced Research WRF Model Using Large-Eddy Simulations of Aerosol–Cloud Interactions Evaluation of Scalar Advection Schemes in the Advanced Research WRF Model Using Large-Eddy Simulations of Aerosol–Cloud Interactions.\BBCQ \APACjournalVolNumPagesMonthly Weather Review13782547–2558. {APACrefURL} https://journals.ametsoc.org/view/journals/mwre/137/8/2009mwr2820.1.xml {APACrefDOI} https://doi.org/10.1175/2009MWR2820.1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleUse of Machine Learning to Reduce Uncertainties in Particle Number Concentration and Aerosol Indirect Radiative Forcing Predicted by Climate Models Use of Machine Learning to Reduce Uncertainties in Particle Number Concentration and Aerosol Indirect Radiative Forcing Predicted by Climate Models.\BBCQ \APACjournalVolNumPagesGeophysical Research Letters4916. {APACrefDOI} 10.1029/2022GL098551 \PrintBackRefs\CurrentBib
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.