Papers
Topics
Authors
Recent
Search
2000 character limit reached

DeliGrasp: Inferring Object Properties with LLMs for Adaptive Grasp Policies

Published 12 Mar 2024 in cs.RO | (2403.07832v3)

Abstract: LLMs can provide rich physical descriptions of most worldly objects, allowing robots to achieve more informed and capable grasping. We leverage LLMs' common sense physical reasoning and code-writing abilities to infer an object's physical characteristics$\unicode{x2013}$mass $m$, friction coefficient $\mu$, and spring constant $k$$\unicode{x2013}$from a semantic description, and then translate those characteristics into an executable adaptive grasp policy. Using a two-finger gripper with a built-in depth camera that can control its torque by limiting motor current, we demonstrate that LLM-parameterized but first-principles grasp policies outperform both traditional adaptive grasp policies and direct LLM-as-code policies on a custom benchmark of 12 delicate and deformable items including food, produce, toys, and other everyday items, spanning two orders of magnitude in mass and required pick-up force. We then improve property estimation and grasp performance on variable size objects with model finetuning on property-based comparisons and eliciting such comparisons via chain-of-thought prompting. We also demonstrate how compliance feedback from DeliGrasp policies can aid in downstream tasks such as measuring produce ripeness. Our code and videos are available at: https://deligrasp.github.io

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng, “Do as I can, Not As I Say: Grounding language in robotic affordances,” arXiv:2204.01691, 2022.
  2. J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng, “Code as policies: Language model programs for embodied control,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 9493–9500.
  3. M. G. Arenas, T. Xiao, S. Singh, V. Jain, A. Z. Ren, Q. Vuong, J. Varley, A. Herzog, I. Leal, S. Kirmani, D. Sadigh, V. Sindhwani, K. Rao, J. Liang, and A. Zeng, “How to prompt your robot: A promptbook for manipulation skills with code as policies,” in 2nd Workshop on Language and Robot Learning: Language as Grounding, 2023. [Online]. Available: https://openreview.net/forum?id=T8AiZj1QdN
  4. W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik, brian ichter, T. Xiao, P. Xu, A. Zeng, T. Zhang, N. Heess, D. Sadigh, J. Tan, Y. Tassa, and F. Xia, “Language to rewards for robotic skill synthesis,” in 7th Annual Conference on Robot Learning, 2023. [Online]. Available: https://openreview.net/forum?id=SgTPdyehXMA
  5. J. Liang, F. Xia, W. Yu, A. Zeng, M. G. Arenas, M. Attarian, M. Bauza, M. Bennice, A. Bewley, A. Dostmohamed, C. K. Fu, N. Gileadi, M. Giustina, K. Gopalakrishnan, L. Hasenclever, J. Humplik, J. Hsu, N. Joshi, B. Jyenis, C. Kew, S. Kirmani, T.-W. E. Lee, K.-H. Lee, A. H. Michaely, J. Moore, K. Oslund, D. Rao, A. Ren, B. Tabanpour, Q. Vuong, A. Wahid, T. Xiao, Y. Xu, V. Zhuang, P. Xu, E. Frey, K. Caluwaerts, T. Zhang, B. Ichter, J. Tompson, L. Takayama, V. Vanhoucke, I. Shafran, M. Mataric, D. Sadigh, N. Heess, K. Rao, N. Stewart, J. Tan, and C. Parada, “Learning to learn faster from human feedback with language model predictive control,” arXiv:2402.11450, 2024.
  6. R. Mirjalili, M. Krawez, S. Silenzi, Y. Blei, and W. Burgard, “Lan-grasp: Using large language models for semantic object grasping,” arXiv:2310.05239, 2023.
  7. S. Jin, J. Xu, Y. Lei, and L. Zhang, “Reasoning grasping via multimodal large language model,” arXiv:2402.06798, 2024.
  8. A. Rashid, S. Sharma, C. M. Kim, J. Kerr, L. Y. Chen, A. Kanazawa, and K. Goldberg, “Language embedded radiance fields for zero-shot task-oriented grasping,” in 7th Annual Conference on Robot Learning, 2023. [Online]. Available: https://openreview.net/forum?id=k-Fg8JDQmc
  9. Z. Ding, N. Paperno, K. Prakash, and A. Behal, “An adaptive control-based approach for 1-click gripping of novel objects using a robotic manipulator,” IEEE Transactions on Control Systems Technology, vol. 27, no. 4, pp. 1805–1812, 2019.
  10. M. Al-Mohammed, R. Adem, and A. Behal, “A switched adaptive controller for robotic gripping of novel objects with minimal force,” IEEE Transactions on Control Systems Technology, vol. 31, no. 1, pp. 17–26, 2023.
  11. Y. Gong, Y. Xing, J. Wu, and Z. Xiong, “Tactile-Based Slip Detection Towards Robot Grasping,” in Intelligent Robotics and Applications, H. Yang, H. Liu, J. Zou, Z. Yin, L. Liu, G. Yang, X. Ouyang, and Z. Wang, Eds.   Singapore: Springer Nature Singapore, 2023, pp. 93–107.
  12. Y. Wang, J. Duan, D. Fox, and S. Srinivasa, “NEWTON: Are large language models capable of physical reasoning?” in Findings of the Association for Computational Linguistics: EMNLP 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Singapore: Association for Computational Linguistics, Dec. 2023, pp. 9743–9758. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.652
  13. H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu, “Anygrasp: Robust and efficient grasp perception in spatial and temporal domains,” IEEE Transactions on Robotics (T-RO), 2023.
  14. C. Tang, D. Huang, W. Ge, W. Liu, and H. Zhang, “GraspGPT: Leveraging semantic knowledge from a large language model for task-oriented grasping,” arXiv:2307.13204, 2023.
  15. N. Farrow, Y. Li, and N. Correll, “Morphological and embedded computation in a self-contained soft robotic hand,” arXiv preprint arXiv:1605.00354, 2016.
  16. H. Hasegawa, Y. Mizoguchi, K. Tadakuma, A. Ming, M. Ishikawa, and M. Shimojo, “Development of intelligent robot hand using proximity, contact and slip sensing,” in 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 777–784.
  17. K. Sullivan, H. Chizeck, and A. Marburg, “Using a rigid gripper on objects of different compliance underwater,” in OCEANS 2022, Hampton Roads, 2022, pp. 1–4.
  18. T. M. Caldwell, D. Coleman, and N. Correll, “Optimal parameter identification for discrete mechanical systems with application to flexible object manipulation,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 898–905.
  19. M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen, X. Wang, X. Zhai, T. Kipf, and N. Houlsby, “Simple open-vocabulary object detection with vision transformers,” arXiv:2205.06230, 2022.
  20. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,” 2023.
  21. N. Correll, D. Kriegman, S. Otto, and J. Watson, “A versatile robotic hand with 3d perception, force sensing for autonomous manipulation,” arXiv:2402.06018, 2024.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.