Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Real-time Dyson Expansion Scheme: Efficient Inclusion of Dynamical Correlations in Non-equilibrium Spectral Properties (2403.07155v2)

Published 11 Mar 2024 in physics.comp-ph

Abstract: Time-resolved photoemission spectroscopy is the key technique to probe the real-time non-equilibrium dynamics of electronic states. Theoretical predictions of the time dependent spectral function for realistic systems is however, a challenge. Employing the Kadanoff-Baym equations to find this quantity results in a cubic scaling in the total number of time steps, quickly becoming prohibitive and often fail quantitatively and even qualitatively. In comparison, mean-field methods have more favorable numerical scaling both in the number of time steps and in the complexity associated with the cost of evolving for a single time step, however they miss key spectral properties such as emergent spectral features. Here we present a scheme that allows for the inclusion of dynamical correlations to the spectral function while maintaining the same scaling in the number of time steps as for mean-field approaches, while capturing the emergent physics. Further, the scheme can be efficiently implemented on top of equilibrium real-time many-body perturbation theory schemes and codes. We see excellent agreement with exact results for test systems. Furthermore we exemplify the method on a periodic system and demonstrate clear evidence that our proposed scheme produces complex spectral features including excitonic band replicas, features that are not observed using static mean-field approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. O. Karni, I. Esin, and K. M. Dani, Through the Lens of a Momentum Microscope: Viewing Light-Induced Quantum Phenomena in 2D Materials, Advanced Materials 35, 2204120 (2023).
  2. E. Perfetto, Y. Pavlyukh, and G. Stefanucci, Real-Time G⁢W𝐺𝑊GWitalic_G italic_W: Toward an Ab Initio Description of the Ultrafast Carrier and Exciton Dynamics in Two-Dimensional Materials, Phys. Rev. Lett. 128, 016801 (2022).
  3. N. Schlünzen, J.-P. Joost, and M. Bonitz, Achieving the Scaling Limit for Nonequilibrium Green Functions Simulations, Phys. Rev. Lett. 124, 076601 (2020).
  4. J. Kaye and D. Golež, Low rank compression in the numerical solution of the nonequilibrium Dyson equation, SciPost Phys. 10, 091 (2021).
  5. P. Lipavský, V. Špička, and B. Velický, Generalized Kadanoff-Baym ansatz for deriving quantum transport equations, Phys. Rev. B 34, 6933 (1986).
  6. M. Bonitz, S. Hermanns, and K. Balzer, Dynamics of Hubbard Nano-Clusters Following Strong Excitation, Contributions to Plasma Physics 53, 778 (2013).
  7. K. Balzer, S. Hermanns, and M. Bonitz, The generalized Kadanoff-Baym ansatz. Computing nonlinear response properties of finite systems, Journal of Physics: Conference Series 427, 012006 (2013).
  8. S. Hermanns, K. Balzer, and M. Bonitz, Few-particle quantum dynamics–comparing nonequilibrium Green functions with the generalized Kadanoff–Baym ansatz to density operator theory, Journal of Physics: Conference Series 427, 012008 (2013).
  9. J.-P. Joost, N. Schlünzen, and M. Bonitz, G1-G2 scheme: Dramatic acceleration of nonequilibrium Green functions simulations within the Hartree-Fock generalized Kadanoff-Baym ansatz, Phys. Rev. B 101, 245101 (2020).
  10. M. P. von Friesen, C. Verdozzi, and C.-O. Almbladh, Successes and Failures of Kadanoff-Baym Dynamics in Hubbard Nanoclusters, Phys. Rev. Lett. 103, 176404 (2009).
  11. M. P. von Friesen, C. Verdozzi, and C.-O. Almbladh, Artificial damping in the Kadanoff-Baym dynamics of small Hubbard chains, Journal of Physics: Conference Series 220, 012016 (2010).
  12. J. K. Freericks, H. R. Krishnamurthy, and T. Pruschke, Theoretical Description of Time-Resolved Photoemission Spectroscopy: Application to Pump-Probe Experiments, Phys. Rev. Lett. 102, 136401 (2009).
  13. F. Boschini, M. Zonno, and A. Damascelli, Time-resolved ARPES studies of quantum materials, Rev. Mod. Phys. 96, 015003 (2024).
  14. M. Hopjan and C. Verdozzi, Initial correlated states for the generalized Kadanoff–Baym Ansatz without adiabatic switching-on of interactions in closed systems, The European Physical Journal Special Topics 227, 1939–1948 (2019).
  15. A. Stan, N. Dahlen, and R. van Leeuwen, Time propagation of the Kadanoff–Baym equations for inhomogeneous systems, J. Chem. Phys. 130, 224101 (2009).
  16. G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, 2013).
  17. J. Kaye and H. U. R. Strand, A fast time domain solver for the equilibrium Dyson equation, Advances in Computational Mathematics 49, 10.1007/s10444-023-10067-7 (2023).
  18. V. Vlček, Stochastic Vertex Corrections: Linear Scaling Methods for Accurate Quasiparticle Energies, Journal of Chemical Theory and Computation 15, 6254 (2019), pMID: 31557012.
  19. F. Randi, D. Fausti, and M. Eckstein, Bypassing the energy-time uncertainty in time-resolved photoemission, Phys. Rev. B 95, 115132 (2017).
  20. C. Mejuto-Zaera and V. Vlček, Self-consistency in G⁢W⁢Γ𝐺𝑊ΓGW\mathrm{\Gamma}italic_G italic_W roman_Γ formalism leading to quasiparticle-quasiparticle couplings, Phys. Rev. B 106, 165129 (2022).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: