Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Chaos and Regularity in the Double Pendulum with Lagrangian Descriptors (2403.07000v1)

Published 5 Mar 2024 in math.DS and nlin.CD

Abstract: In this paper we apply the method of Lagrangian descriptors as an indicator to study the chaotic and regular behavior of trajectories in the phase space of the classical double pendulum system. In order to successfully quantify the degree of chaos with this tool, we first derive Hamilton's equations of motion for the problem in non-dimensional form, showing that they can be written compactly using matrix algebra. Once the dynamical equations are obtained, we carry out a parametric study in terms of the system's total energy and the other model parameters (lengths and masses of the pendulums, and gravity), to determine the extent of the chaotic and regular regions in the phase space. Our numerical results show that for a given mass ratio, the maximum chaotic fraction of phase space trajectories is attained when the pendulums have equal lengths. Moreover, we give a characterization of the growth and decay of chaos in the system in terms of the model parameters, and explore the hypothesis that the chaotic fraction follows an exponential law over different energy regimes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. D. Assencio. Double pendulum: Hamiltonian formulation. https://dassencio.org/46, 2014. Last accessed 9 February 2024. URL: https://dassencio.org/46.
  2. Regular and chaotic phase space fraction in the double pendulum. arXiv preprint arXiv:2312.13436, 2023.
  3. P. Dahlqvist and G. Russberg. Existence of stable orbits in the x2superscript𝑥2{\mathit{x}}^{2}italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTy2superscript𝑦2{\mathit{y}}^{2}italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT potential. Phys. Rev. Lett., 65:2837–2838, Dec 1990. doi:10.1103/PhysRevLett.65.2837.
  4. Extracting Lagrangian coherent structures in cardiovascular flows using Lagrangian descriptors. Physics of Fluids, 33(11):111707, 2021. doi:10.1063/5.0064023.
  5. D. Deleanu. The dynamics of a double pendulum: Classic and modern approach. Annals of “Dunarea de Jos” University of Galati, Mathematics, Physics, Theoretical Mechanics, Fascicle II, Year, 3:203–212, 2011.
  6. A dynamical systems perspective for a real-time response to a marine oil spill. Marine Pollution Bulletin, 112(1):201–210, 2016. doi:10.1016/j.marpolbul.2016.08.018.
  7. H. Goldstein. Classical Mechanics. Pearson, 2011.
  8. Quantifying chaos using lagrangian descriptors. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(12):123122, 2022. doi:10.1063/5.0120889.
  9. Numerical approach of hamilton equations on double pendulum motion with axial forcing constraint. Journal of Physics: Conference Series, 739(1):012066, 2016. doi:10.1088/1742-6596/739/1/012066.
  10. Saddle transport and chaos in the double pendulum. Nonlinear Dynamics, 111(8):7199–7233, 2023. doi:10.1007/s11071-023-08232-0.
  11. Chaos: A Program Collection for the PC. Springer Berlin Heidelberg, 2007. doi:10.1007/978-3-540-74867-0.
  12. Double pendulum: An experiment in chaos. American Journal of Physics, 61(11):1038–1044, 1993. doi:10.1119/1.17335.
  13. A theoretical framework for lagrangian descriptors. International Journal of Bifurcation and Chaos, 27(01):1730001, 2017. doi:10.1142/S0218127417300014.
  14. Distinguished trajectories in time dependent vector fields. Chaos, 19:013111, 2009. doi:10.1063/1.3056050.
  15. Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems. Communications in Nonlinear Science and Numerical, 18:3530–3557, 2013. doi:10.1016/j.cnsns.2013.05.002.
  16. C. Mendoza and A. M. Mancho. Hidden geometry of ocean flows. Phys. Rev. Lett., 105:038501, 2010. doi:10.1103/PhysRevLett.105.038501.
  17. K. Miyamoto. Long term simulations of the double pendulum by keeping the value of hamiltonian constant. In 2013 8th EUROSIM Congress on Modelling and Simulation, pages 130–135. IEEE, 2013. doi:10.1109/EUROSIM.2013.33.
  18. Bifurcation behavior of the furuta pendulum. International Journal of Bifurcation and Chaos, 17(08):2571–2578, 2007. doi:10.1142/S0218127407018634.
  19. S. Naik and S. Wiggins. Detecting reactive islands in a system-bath model of isomerization. Phys. Chem. Chem. Phys., 22:17890–17912, 2020. doi:10.1039/D0CP01362E.
  20. Finding regions of bounded motion in binary asteroid environment using lagrangian descriptors. Communications in Nonlinear Science and Numerical Simulation, 121:107198, 2023. doi:10.1016/j.cnsns.2023.107198.
  21. Chaos in a double pendulum. American Journal of Physics, 60(6):491–499, 1992. doi:10.1119/1.16860.
  22. Chaos Detection and Predictability. Lecture Notes in Physics. Springer Berlin Heidelberg, 2016. doi:10.1007/978-3-662-48410-4.
  23. T. Stachowiak and T. Okada. A numerical analysis of chaos in the double pendulum. Chaos, Solitons & Fractals, 29(2):417–422, 2006. doi:10.1016/j.chaos.2005.08.032.
  24. W. Szumiński. A new model of variable-length coupled pendulums: from hyperchaos to superintegrability. Nonlinear Dynamics, pages 1–29, 2024. doi:10.1007/s11071-023-09253-5.
  25. J. M. T. Thompson. Chaos, fractals and their applications. International Journal of Bifurcation and Chaos, 26(13):1630035, 2016. doi:10.1142/S0218127416300354.
  26. Performance of chaos diagnostics based on lagrangian descriptors. application to the 4d standard map. Physica D: Nonlinear Phenomena, 453:133833, 2023. doi:10.1016/j.physd.2023.133833.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.