Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Regular and chaotic phase space fraction in the double pendulum (2312.13436v1)

Published 20 Dec 2023 in nlin.CD

Abstract: The double coplanar pendulum is an example of the coexistence of regular and chaotic dynamics for equal energy values but different initial conditions. Regular trajectories predominate for low energies; as the energy is increased, the system passes through values where chaotic trajectories are abundant, and then, increasing the energy further, it is again dominated by regular trajectories. Given that the energetically accessible states are bounded, a relevant question is about the fraction of phase space regular or chaotic trajectories as the energy varies. In this paper, we calculate the relative abundance of chaotic trajectories in phase space, characterizing the trajectories using the maximum Lyapunov exponent, and find that, for low energies, it grows exponentially.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. V. I. Arnold, Mathematical methods of classical mechanics, Vol. 60 (Springer Science & Business Media, 2013).
  2. A. J. Lichtenberg and M. A. Lieberman, Regular and stochastic motion, Vol. 38 (Springer Science & Business Media, 2013).
  3. G. Zaslavsky, Physica D: Nonlinear Phenomena 168, 292 (2002).
  4. A. C. Luo and C. Guo, Journal of Vibration Testing and System Dynamics 3, 259 (2019).
  5. S. D’Alessio, European Journal of Physics 44, 015002 (2022).
  6. T. Manos and E. Athanassoula, Monthly Notices of the Royal Astronomical Society 415, 629 (2011).
  7. T. Stachowiak and T. Okada, Chaos, Solitons & Fractals 29, 417 (2006).
  8. A. M. Calvão and T. J. P. Penna, European Journal of Physics 36, 045018 (2015).
  9. T. M. Inc, “ode45,” https://la.mathworks.com/help/matlab/ref/ode45.html?lang=en, Accessed on 12/11/2023.
  10. G. S. Krishnaswami and H. Senapati, Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 123121 (2019).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.