Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rapid state-recrossing kinetics in non-Markovian systems (2403.06604v1)

Published 11 Mar 2024 in cond-mat.stat-mech, math-ph, math.MP, and physics.chem-ph

Abstract: The mean first-passage time (MFPT) is one standard measure for the reaction time in thermally activated barrier-crossing processes. While the relationship between MFPTs and phenomenological rate coefficients is known for systems that satisfy Markovian dynamics, it is not clear how to interpret MFPTs for experimental and simulation time-series data generated by non-Markovian systems. Here, we simulate a one-dimensional generalized Langevin equation (GLE) in a bistable potential and compare two related numerical methods for evaluating MFPTs: one that only incorporates information about first arrivals between subsequent states and is equivalent to calculating the waiting time, or dwell time, and one that incorporates information about all first-passages associated with a given barrier-crossing event and is therefore typically employed to enhance numerical sampling. In the Markovian limit, the two methods are equivalent. However, for significant memory times, the two methods suggest dramatically different reaction kinetics. By focusing on first-passage distributions, we systematically reveal the influence of memory-induced rapid state-recrossing on the MFPTs, which we compare to various other numerical or theoretical descriptions of reaction times. Overall, we demonstrate that it is necessary to consider full first-passage distributions, rather than just the mean barrier-crossing kinetics when analyzing non-Markovian time series data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. M. P. Allen, Molecular Physics 40, 1073 (1980).
  2. J. Trullàs, A. Giró, and J. A. Padró, The Journal of Chemical Physics 93, 5177 (1990).
  3. D. W. Rebertus, B. J. Berne, and D. Chandler, The Journal of Chemical Physics 70, 3395 (1979).
  4. R. O. Rosenberg, B. J. Berne, and D. Chandler, Chemical Physics Letters 75, 162 (1980).
  5. G. Rothenberger, D. K. Negus, and R. M. Hochstrasser, The Journal of Chemical Physics 79, 5360 (1983).
  6. B. Schuler and W. A. Eaton, Current Opinion in Structural Biology 18, 16 (2008).
  7. H. S. Chung and W. A. Eaton, Nature 502, 685 (2013).
  8. H. A. Kramers, Physica 7, 284 (1940).
  9. P. Hänggi, P. Talkner, and M. Borkovec, Reviews of Modern Physics 62, 251 (1990).
  10. N. D. Socci, J. N. Onuchic, and P. G. Wolynes, The Journal of Chemical Physics 104, 5860 (1996).
  11. R. B. Best and G. Hummer, Physical Review Letters 96, 228104 (2006).
  12. F. N. Brünig, J. O. Daldrop, and R. R. Netz, The Journal of Physical Chemistry B 126, 10295 (2022b).
  13. B. A. Dalton, H. Kiefer, and R. R. Netz, arXiv arXiv:2309.07521 (2023a).
  14. B. A. Dalton and R. R. Netz, arXiv arXiv:2401.12027 (2024).
  15. R. F. Grote and J. T. Hynes, The Journal of Chemical Physics 73, 2715 (1980).
  16. E. Pollak, H. Grabert, and P. Hänggi, The Journal of Chemical Physics 91, 4073 (1989).
  17. J. Kappler, V. B. Hinrichsen, and R. R. Netz, The European Physical Journal E 42, 119 (2019).
  18. J. L. Skinner and P. G. Wolynes, The Journal of Chemical Physics 69, 2143 (1978).
  19. P. Talkner, Zeitschrift für Physik B Condensed Matter 68, 201 (1987).
  20. D. Chandler, The Journal of Chemical Physics 68, 2959 (1978).
  21. B. Roux, The Journal of Chemical Physics 156, 134111 (2022).
  22. S. Acharya and B. Bagchi, Physical Review E 107, 24127 (2023).
  23. P. Hänggi and P. Talkner, Zeitschrift für Physik B Condensed Matter 45, 79 (1981).
  24. P. Hänggi and P. Talkner, Physical Review Letters 51, 2242 (1983).
  25. R. Zwanzig, Physical Review 124, 983 (1961).
  26. H. Mori, Progress of Theoretical Physics 33, 423 (1965).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets