Using Fiber Optic Bundles to Miniaturize Vision-Based Tactile Sensors (2403.05500v4)
Abstract: Vision-based tactile sensors have recently become popular due to their combination of low cost, very high spatial resolution, and ease of integration using widely available miniature cameras. The associated field of view and focal length, however, are difficult to package in a human-sized finger. In this paper we employ optical fiber bundles to achieve a form factor that, at 15 mm diameter, is smaller than an average human fingertip. The electronics and camera are also located remotely, further reducing package size. The sensor achieves a spatial resolution of 0.22 mm and a minimum force resolution 5 mN for normal and shear contact forces. With these attributes, the DIGIT Pinki sensor is suitable for applications such as robotic and teleoperated digital palpation. We demonstrate its utility for palpation of the prostate gland and show that it can achieve clinically relevant discrimination of prostate stiffness for phantom and ex vivo tissue.
- M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi, G. Kammerer et al., “Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3838–3845, 2020.
- W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, p. 2762, 2017.
- N. F. Lepora, “Soft biomimetic optical tactile sensing with the tactip: A review,” IEEE Sensors Journal, vol. 21, no. 19, pp. 21 131–21 143, 2021.
- I. H. Taylor, S. Dong, and A. Rodriguez, “Gelslim 3.0: High-resolution measurement of shape, force and slip in a compact tactile-sensing finger,” in 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022, pp. 10 781–10 787.
- S. Wang, Y. She, B. Romero, and E. Adelson, “Gelsight wedge: Measuring high-resolution 3d contact geometry with a compact robot finger,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 6468–6475.
- A. Padmanabha, F. Ebert, S. Tian, R. Calandra, C. Finn, and S. Levine, “OmniTact: A multi-directional high-resolution touch sensor,” in IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 618–624. [Online]. Available: https://arxiv.org/abs/2003.06965
- M. H. Tippur and E. H. Adelson, “Gelsight360: An omnidirectional camera-based tactile sensor for dexterous robotic manipulation,” in 2023 IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2023, pp. 1–8.
- H. Sun, K. J. Kuchenbecker, and G. Martius, “A soft thumb-sized vision-based sensor with accurate all-round force perception,” Nature Machine Intelligence, vol. 4, no. 2, pp. 135–145, 2022.
- L. Wang, B. Lu, M. He, Y. Wang, Z. Wang, and L. Du, “Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019,” Frontiers in Public Health, vol. 10, p. 176, 2022.
- D. S. Smith and W. J. Catalona, “Interexaminer variability of digital rectal examination in detecting prostate cancer,” Urology, vol. 45, no. 1, pp. 70–74, 1995.
- J. W. Garrett, “The adult human hand: some anthropometric and biomechanical considerations,” Human factors, vol. 13, no. 2, pp. 117–131, 1971.
- D. F. Gomes and S. Luo, “Geltip tactile sensor for dexterous manipulation in clutter,” in Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation. Elsevier, 2022, pp. 3–21.
- S. Q. Liu and E. H. Adelson, “Gelsight fin ray: Incorporating tactile sensing into a soft compliant robotic gripper,” in 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft). IEEE, 2022, pp. 925–931.
- J. Zhao and E. H. Adelson, “Gelsight svelte: A human finger-shaped single-camera tactile robot finger with large sensing coverage and proprioceptive sensing,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 8979–8984.
- W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Advanced materials, vol. 26, no. 31, pp. 5310–5336, 2014.
- F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based mr-compatible sensors for medical applications: An overview,” Sensors, vol. 13, no. 10, pp. 14 105–14 120, 2013.
- C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” Journal of biophotonics, vol. 3, no. 5-6, pp. 385–407, 2010.
- A. Orth, M. Ploschner, E. Wilson, I. Maksymov, and B. Gibson, “Optical fiber bundles: Ultra-slim light field imaging probes,” Science advances, vol. 5, no. 4, p. eaav1555, 2019.
- U. H. Shah, R. Muthusamy, D. Gan, Y. Zweiri, and L. Seneviratne, “On the design and development of vision-based tactile sensors,” Journal of Intelligent & Robotic Systems, vol. 102, pp. 1–27, 2021.
- J.-S. Heo, J.-Y. Kim, and J.-J. Lee, “Tactile sensors using the distributed optical fiber sensors,” in 2008 3rd International Conference on Sensing Technology. IEEE, 2008, pp. 486–490.
- H. Maekawa, K. Tanie, and K. Komoriya, “A finger-shaped tactile sensor using an optical waveguide,” in Proceedings of IEEE Systems Man and Cybernetics Conference-SMC, vol. 5. IEEE, 1993, pp. 403–408.
- S. Begej, “Planar and finger-shaped optical tactile sensors for robotic applications,” IEEE Journal on Robotics and Automation, vol. 4, no. 5, pp. 472–484, 1988.
- H. Xie, A. Jiang, H. A. Wurdemann, H. Liu, L. D. Seneviratne, and K. Althoefer, “Magnetic resonance-compatible tactile force sensor using fiber optics and vision sensor,” IEEE Sensors Journal, vol. 14, no. 3, pp. 829–838, 2013.
- B. Ali, M. A. Ayub, and H. Yussof, “Characteristics of a new optical tactile sensor for interactive robot fingers,” International Journal of Social Robotics, vol. 4, pp. 85–91, 2012.
- H. Yussof, J. Wada, and M. Ohka, “Sensorization of robotic hand using optical three-axis tactile sensor: Evaluation with grasping and twisting motions,” Journal of Computer Science, vol. 6, no. 8, p. 955, 2010.
- S. Boppart, T. Deutsch, and D. Rattner, “Optical imaging technology in minimally invasive surgery: current status and future directions,” Surgical endoscopy, vol. 13, pp. 718–722, 1999.
- H. A. C. Wood, K. Harrington, J. M. Stone, T. A. Birks, and J. C. Knight, “Quantitative characterization of endoscopic imaging fibers,” Opt. Express, vol. 25, no. 3, pp. 1985–1992, Feb 2017. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?URI=oe-25-3-1985
- A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Applied optics, vol. 43, no. 31, pp. 5763–5771, 2004.
- S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” Journal of biophotonics, vol. 4, no. 7-8, pp. 471–481, 2011.
- M. I. Tiwana, S. J. Redmond, and N. H. Lovell, “A review of tactile sensing technologies with applications in biomedical engineering,” Sensors and Actuators A: physical, vol. 179, pp. 17–31, 2012.
- W. Othman, Z.-H. A. Lai, C. Abril, J. S. Barajas-Gamboa, R. Corcelles, M. Kroh, and M. A. Qasaimeh, “Tactile sensing for minimally invasive surgery: Conventional methods and potential emerging tactile technologies,” Frontiers in Robotics and AI, p. 376, 2022.
- C. Huang, Q. Wang, M. Zhao, C. Chen, S. Pan, and M. Yuan, “Tactile perception technologies and their applications in minimally invasive surgery: a review,” Frontiers in Physiology, vol. 11, p. 611596, 2020.
- S. Wang, K. Wang, R. Tang, J. Qiao, H. Liu, and Z.-G. Hou, “Design of a low-cost miniature robot to assist the covid-19 nasopharyngeal swab sampling,” IEEE Transactions on Medical Robotics and Bionics, vol. 3, no. 1, pp. 289–293, 2020.
- S. Li, M. He, W. Ding, L. Ye, X. Wang, J. Tan, J. Yuan, and X.-P. Zhang, “Visuotactile sensor enabled pneumatic device towards compliant oropharyngeal swab sampling,” arXiv preprint arXiv:2305.06537, 2023. [Online]. Available: https://arxiv.org/pdf/2305.06537.pdf
- J. Konstantinova, A. Jiang, K. Althoefer, P. Dasgupta, and T. Nanayakkara, “Implementation of tactile sensing for palpation in robot-assisted minimally invasive surgery: A review,” IEEE Sensors Journal, vol. 14, no. 8, pp. 2490–2501, 2014.
- X. Jia, R. Li, M. A. Srinivasan, and E. H. Adelson, “Lump detection with a gelsight sensor,” in World Haptics Conference (WHC), 2013, pp. 175–179.
- S. Laufer, E. R. Cohen, C. Kwan, A.-L. D. D’Angelo, R. Yudkowsky, J. R. Boulet, W. C. McGaghie, and C. M. Pugh, “Sensor technology in assessments of clinical skill,” New England Journal of Medicine, vol. 372, no. 8, pp. 784–786, 2015.
- L. Naji, H. Randhawa, Z. Sohani, B. Dennis, D. Lautenbach, O. Kavanagh, M. Bawor, L. Banfield, and J. Profetto, “Digital rectal examination for prostate cancer screening in primary care: a systematic review and meta-analysis,” The Annals of Family Medicine, vol. 16, no. 2, pp. 149–154, 2018.
- S. Bott, M. Young, M. Kellett, M. Parkinson, and C. to the UCL Hospitals’ Trust Radical Prostatectomy Database, “Anterior prostate cancer: is it more difficult to diagnose?” BJU international, vol. 89, no. 9, pp. 886–889, 2002.
- J. T. Wei, D. Barocas, S. Carlsson, F. Coakley, S. Eggener, R. Etzioni, S. W. Fine, M. Han, S. K. Kim, E. Kirkby et al., “Early detection of prostate cancer: Aua/suo guideline part i: prostate cancer screening,” The Journal of Urology, vol. 210, no. 1, pp. 46–53, 2023.
- B. Ahn, H. Lee, Y. Kim, and J. Kim, “Robotic system with sweeping palpation and needle biopsy for prostate cancer diagnosis,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 10, no. 3, pp. 356–367, 2014.
- M. Tanaka, M. Furubayashi, Y. Tanahashi, and S. Chonan, “Development of an active palpation sensor for detecting prostatic cancer and hypertrophy,” Smart materials and structures, vol. 9, no. 6, p. 878, 2000.
- A. Iele, A. Ricciardi, C. Pecorella, A. Cirillo, F. Ficuciello, B. Siciliano, R. La Rocca, V. Mirone, M. Consales, and A. Cusano, “Miniaturized optical fiber probe for prostate cancer screening,” Biomedical Optics Express, vol. 12, no. 9, pp. 5691–5703, 2021.
- O. Sanni, G. Bonvicini, M. A. Khan, P. C. López-Custodio, K. Nazari et al., “Deep movement primitives: toward breast cancer examination robot,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 11, 2022, pp. 12 126–12 134.
- K. A. Nichols and A. M. Okamura, “Methods to segment hard inclusions in soft tissue during autonomous robotic palpation,” IEEE Transactions on Robotics, vol. 31, no. 2, pp. 344–354, 2015.
- H. Qi, B. Yi, S. Suresh, M. Lambeta, Y. Ma, R. Calandra, and J. Malik, “General in-hand object rotation with vision and touch,” in Conference on Robot Learning (CORL), 2023. [Online]. Available: https://arxiv.org/abs/2309.09979
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- H. Hertz, “Über die berührung fester elastischer körper.” J reine und angewandte Mathematik, vol. 92, p. 156, 1881.
- S. E. Navarro, S. S. Dhaliwal, M. S. Lopez, S. Wilby, A. L. Palmer, W. Polak, R. Merzouki, and C. Duriez, “A bio-inspired active prostate phantom for adaptive interventions,” IEEE Transactions on Medical Robotics and Bionics, vol. 4, no. 2, pp. 300–310, 2021.
- Z. Tong, Y. Song, J. Wang, and L. Wang, “Videomae: Masked autoencoders are data-efficient learners for self-supervised video pre-training,” Advances in neural information processing systems, vol. 35, pp. 10 078–10 093, 2022.
- L. A. Baumgart, G. J. Gerling, and E. J. Bass, “Characterizing the range of simulated prostate abnormalities palpable by digital rectal examination,” Cancer epidemiology, vol. 34, no. 1, pp. 79–84, 2010.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.