Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Consecutive Batch Model Editing with HooK Layers (2403.05330v3)

Published 8 Mar 2024 in cs.CL

Abstract: As the typical retraining paradigm is unacceptably time- and resource-consuming, researchers are turning to model editing to find an effective way that supports both consecutive and batch scenarios to edit the model behavior directly. Despite all these practical expectations, existing model editing methods fail to realize all of them. Furthermore, the memory demands for such sequential model editing approaches tend to be prohibitive, frequently necessitating an external memory that grows incrementally over time. To cope with these challenges, we propose CoachHooK, a model editing method that simultaneously supports sequential and batch editing. CoachHooK is memory-friendly as it only needs a small amount of it to store several hook layers whose size remains unchanged over time. Experimental results demonstrate the superiority of our method over other batch-supportive model editing methods under both single-round and consecutive batch editing scenarios. Extensive analyses of CoachHooK have been conducted to verify the stability of our method over a number of consecutive steps.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Temporal effects on pre-trained models for language processing tasks. Trans. Assoc. Comput. Linguistics, 10:904–921, 2022. URL https://transacl.org/ojs/index.php/tacl/article/view/3863.
  2. Gpt-neox-20b: An open-source autoregressive language model. CoRR, abs/2204.06745, 2022. doi: 10.48550/ARXIV.2204.06745. URL https://doi.org/10.48550/arXiv.2204.06745.
  3. Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.
  4. Editing factual knowledge in language models. In Moens, M., Huang, X., Specia, L., and Yih, S. W. (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp.  6491–6506. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.522. URL https://doi.org/10.18653/v1/2021.emnlp-main.522.
  5. Can we edit multimodal large language models? arXiv preprint arXiv:2310.08475, 2023.
  6. Scaling instruction-finetuned language models. CoRR, abs/2210.11416, 2022. doi: 10.48550/ARXIV.2210.11416. URL https://doi.org/10.48550/arXiv.2210.11416.
  7. Knowledge neurons in pretrained transformers. In Muresan, S., Nakov, P., and Villavicencio, A. (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  8493–8502, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.581. URL https://aclanthology.org/2022.acl-long.581.
  8. Editing factual knowledge in language models. In Moens, M.-F., Huang, X., Specia, L., and Yih, S. W.-t. (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.  6491–6506, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.522. URL https://aclanthology.org/2021.emnlp-main.522.
  9. Calibrating factual knowledge in pretrained language models. In Goldberg, Y., Kozareva, Z., and Zhang, Y. (eds.), Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp.  5937–5947. Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.FINDINGS-EMNLP.438. URL https://doi.org/10.18653/v1/2022.findings-emnlp.438.
  10. Aging with GRACE: lifelong model editing with discrete key-value adaptors. CoRR, abs/2211.11031, 2022. doi: 10.48550/ARXIV.2211.11031. URL https://doi.org/10.48550/arXiv.2211.11031.
  11. Transformer-patcher: One mistake worth one neuron. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=4oYUGeGBPm.
  12. Ever: Mitigating hallucination in large language models through real-time verification and rectification. CoRR, abs/2311.09114, 2023. doi: 10.48550/ARXIV.2311.09114. URL https://doi.org/10.48550/arXiv.2311.09114.
  13. Adam: A method for stochastic optimization. In Bengio, Y. and LeCun, Y. (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.
  14. Mind the gap: Assessing temporal generalization in neural language models. In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.  29348–29363, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/f5bf0ba0a17ef18f9607774722f5698c-Abstract.html.
  15. Zero-shot relation extraction via reading comprehension. In Levy, R. and Specia, L. (eds.), Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pp.  333–342, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/K17-1034. URL https://aclanthology.org/K17-1034.
  16. PMET: precise model editing in a transformer. CoRR, abs/2308.08742, 2023. doi: 10.48550/ARXIV.2308.08742. URL https://doi.org/10.48550/arXiv.2308.08742.
  17. Streamingqa: A benchmark for adaptation to new knowledge over time in question answering models. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and Sabato, S. (eds.), International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pp.  13604–13622. PMLR, 2022. URL https://proceedings.mlr.press/v162/liska22a.html.
  18. Editing personality for llms. arXiv preprint arXiv:2310.02168, 2023.
  19. Locating and editing factual associations in GPT. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html.
  20. Mass-editing memory in a transformer. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=MkbcAHIYgyS.
  21. Fast model editing at scale. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022a. URL https://openreview.net/forum?id=0DcZxeWfOPt.
  22. Memory-based model editing at scale. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and Sabato, S. (eds.), International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pp.  15817–15831. PMLR, 2022b. URL https://proceedings.mlr.press/v162/mitchell22a.html.
  23. Self-contradictory hallucinations of large language models: Evaluation, detection and mitigation. CoRR, abs/2305.15852, 2023. doi: 10.48550/ARXIV.2305.15852. URL https://doi.org/10.48550/arXiv.2305.15852.
  24. OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774. URL https://doi.org/10.48550/arXiv.2303.08774.
  25. How context affects language models’ factual predictions. In Das, D., Hajishirzi, H., McCallum, A., and Singh, S. (eds.), Conference on Automated Knowledge Base Construction, AKBC 2020, Virtual, June 22-24, 2020, 2020. doi: 10.24432/C5201W. URL https://doi.org/10.24432/C5201W.
  26. Detecting and mitigating hallucinations in multilingual summarisation. In Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp.  8914–8932. Association for Computational Linguistics, 2023. URL https://aclanthology.org/2023.emnlp-main.551.
  27. Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL http://arxiv.org/abs/1910.01108.
  28. Strang, G. Introduction to linear algebra. SIAM, 2022.
  29. A comprehensive survey of hallucination mitigation techniques in large language models. CoRR, abs/2401.01313, 2024. doi: 10.48550/ARXIV.2401.01313. URL https://doi.org/10.48550/arXiv.2401.01313.
  30. Llama 2: Open foundation and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL https://doi.org/10.48550/arXiv.2307.09288.
  31. A stitch in time saves nine: Detecting and mitigating hallucinations of llms by validating low-confidence generation. CoRR, abs/2307.03987, 2023. doi: 10.48550/ARXIV.2307.03987. URL https://doi.org/10.48550/arXiv.2307.03987.
  32. Easyedit: An easy-to-use knowledge editing framework for large language models. arXiv preprint arXiv:2308.07269, 2023.
  33. Editing large language models: Problems, methods, and opportunities. In Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp.  10222–10240. Association for Computational Linguistics, 2023. URL https://aclanthology.org/2023.emnlp-main.632.
  34. Knowlm technical report, 2023. URL http://knowlm.zjukg.cn/.
  35. A comprehensive study of knowledge editing for large language models. arXiv preprint arXiv:2401.01286, 2024.
  36. Modifying memories in transformer models. CoRR, abs/2012.00363, 2020. URL https://arxiv.org/abs/2012.00363.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.