GenML: A Python Library to Generate the Mittag-Leffler Correlated Noise (2403.04273v2)
Abstract: Mittag-Leffler correlated noise (M-L noise) plays a crucial role in the dynamics of complex systems, yet the scientific community has lacked tools for its direct generation. Addressing this gap, our work introduces GenML, a Python library specifically designed for generating M-L noise. We detail the architecture and functionalities of GenML and its underlying algorithmic approach, which enables the precise simulation of M-L noise. The effectiveness of GenML is validated through quantitative analyses of autocorrelation functions and diffusion behaviors, showcasing its capability to accurately replicate theoretical noise properties. Our contribution with GenML enables the effective application of M-L noise data in numerical simulation and data-driven methods for describing complex systems, moving beyond mere theoretical modeling.
- M. B. Plenio and S. F. Huelga, Entangled light from white noise, Phys. Rev. Lett. 88, 197901 (2002).
- A. Ghanta, J. C. Neu, and S. Teitsworth, Fluctuation loops in noise-driven linear dynamical systems, Phys. Rev. E 95, 032128 (2017).
- C. C. Bernido and M. V. Carpio-Bernido, White noise analysis: Some applications in complex systems, biophysics and quantum mechanics, Int. J. Mod. Phys. B 26, 1230014 (2012).
- H.-M. Chun, X. Durang, and J. D. Noh, Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force, Phys. Rev. E 97, 032117 (2018).
- X. Zhou, Cooperative atomic scattering of light from a laser with a colored noise spectrum, Phys. Rev. A 80, 023818 (2009).
- A. Kamenev, B. Meerson, and B. Shklovskii, How colored environmental noise affects population extinction, Phys. Rev. Lett. 101, 268103 (2008).
- R. Kazakevičius and J. Ruseckas, Power law statistics in the velocity fluctuations of Brownian particle in inhomogeneous media and driven by colored noise, J. Stat. Mech. Theor. Exp. 2015, P02021 (2015).
- A. D. Viñales and M. A. Despósito, Anomalous diffusion induced by a Mittag-Leffler correlated noise, Phys. Rev. E 75, 042102 (2007).
- A. D. Viñales and G. H. Paissan, Velocity autocorrelation of a free particle driven by a Mittag-Leffler noise: Fractional dynamics and temporal behaviors, Phys. Rev. E 90, 062103 (2014).
- K. S. Fa, Fractional oscillator noise and its applications, Int. J. Mod. Phys. B 34, 2050234 (2020).
- K. Laas and R. Mankin, Resonance of Brownian vortices in viscoelastic shear flows, in AIP Conf. Proc., Vol. 1684 (AIP Publishing, 2015).
- L. D. Cairano, B. Stamm, and V. Calandrini, Subdiffusive-Brownian crossover in membrane proteins: A generalized Langevin equation-based approach, Biophys. J. 120, 4722 (2021).
- P. Umamaheswaria, K. Balachandrana, and N. Annapoorania, Existence and stability results for Caputo fractional stochastic differential equations with Lévy noise, Filomat 34, 1739 (2020).
- E. Milotti, Exact numerical simulation of power-law noises, Phys. Rev. E 72, 056701 (2005).
- N. J. Kasdin, Discrete simulation of colored noise and stochastic processes and 1/fα1superscript𝑓𝛼1/f^{\alpha}1 / italic_f start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT power law noise generation, Proc. IEEE 83, 802 (1995).
- D. Bykhovsky, Mathematica code for numerical generation of random process with given distribution and exponential autocorrelation function, SoftwareX 8, 18 (2018).
- L. Stella, C. D. Lorenz, and L. Kantorovich, Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems, Phys. Rev. B 89, 134303 (2014).
- S. A. Hollingsworth and R. O. Dror, Molecular dynamics simulation for all, Neuron 99, 1129 (2018).
- D. Li, Q. Yao, and Z. Huang, WaveNet-based deep neural networks for the characterization of anomalous diffusion (WADNet), J. Phys. A Math. Theor. 54, 404003 (2021).
- R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions, SIAM J. Numer. Anal. 53, 1350 (2015).
- S. Rjasanow, Effective algorithms with circulant-block matrices, Linear Algebra Appl. 202, 55 (1994).
- R. B. Davies and D. S. Harte, Tests for Hurst effect, Biometrika 74, 95 (1987).
- P. F. Craigmile, Simulating a class of stationary Gaussian processes using the Davies–Harte algorithm, with application to long memory processes, J. Time Ser. Anal. 24, 505 (2003).
- M. P. Allen and D. J. Tildesley, Computer simulation of liquids (Oxford University Press, 2017).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.