Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data-Driven Approach for Discovering Stochastic Dynamical Systems with Non-Gaussian Levy Noise (2005.03769v2)

Published 7 May 2020 in stat.ML, cs.LG, and physics.data-an

Abstract: With the rapid increase of valuable observational, experimental and simulating data for complex systems, great efforts are being devoted to discovering governing laws underlying the evolution of these systems. However, the existing techniques are limited to extract governing laws from data as either deterministic differential equations or stochastic differential equations with Gaussian noise. In the present work, we develop a new data-driven approach to extract stochastic dynamical systems with non-Gaussian symmetric L\'evy noise, as well as Gaussian noise. First, we establish a feasible theoretical framework, by expressing the drift coefficient, diffusion coefficient and jump measure (i.e., anomalous diffusion) for the underlying stochastic dynamical system in terms of sample paths data. We then design a numerical algorithm to compute the drift, diffusion coefficient and jump measure, and thus extract a governing stochastic differential equation with Gaussian and non-Gaussian noise. Finally, we demonstrate the efficacy and accuracy of our approach by applying to several prototypical one-, two- and three-dimensional systems. This new approach will become a tool in discovering governing dynamical laws from noisy data sets, from observing or simulating complex phenomena, such as rare events triggered by random fluctuations with heavy as well as light tail statistical features.

Citations (39)

Summary

We haven't generated a summary for this paper yet.