Cobweb: An Incremental and Hierarchical Model of Human-Like Category Learning (2403.03835v3)
Abstract: Cobweb, a human-like category learning system, differs from most cognitive science models in incrementally constructing hierarchically organized tree-like structures guided by the category utility measure. Prior studies have shown that Cobweb can capture psychological effects such as basic-level, typicality, and fan effects. However, a broader evaluation of Cobweb as a model of human categorization remains lacking. The current study addresses this gap. It establishes Cobweb's alignment with classical human category learning effects. It also explores Cobweb's flexibility to exhibit both exemplar- and prototype-like learning within a single framework. These findings set the stage for further research on Cobweb as a robust model of human category learning.
- \APACinsertmetastaranderson1974retrieval{APACrefauthors}Anderson, J\BPBIR. \APACrefYearMonthDay1974. \BBOQ\APACrefatitleRetrieval of propositional information from long-term memory Retrieval of propositional information from long-term memory.\BBCQ \APACjournalVolNumPagesCognitive psychology64451–474. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1990. \BBOQ\APACrefatitleA rational analysis of categorization A rational analysis of categorization.\BBCQ \BIn \APACrefbtitleMachine Learning Proceedings 1990 Machine learning proceedings 1990 (\BPGS 76–84). \APACaddressPublisherElsevier. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1995. \BBOQ\APACrefatitleCategorization as probability density estimation Categorization as probability density estimation.\BBCQ \APACjournalVolNumPagesJournal of mathematical psychology392216–233. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1992. \BBOQ\APACrefatitleExplaining basic categories: Feature predictability and information. Explaining basic categories: Feature predictability and information.\BBCQ \APACjournalVolNumPagesPsychological bulletin1112291. \PrintBackRefs\CurrentBib
- \APACinsertmetastarfeldman2006algebra{APACrefauthors}Feldman, J. \APACrefYearMonthDay2006. \BBOQ\APACrefatitleAn algebra of human concept learning An algebra of human concept learning.\BBCQ \APACjournalVolNumPagesJournal of mathematical psychology504339–368. \PrintBackRefs\CurrentBib
- \APACinsertmetastarfisher1987knowledge{APACrefauthors}Fisher, D\BPBIH. \APACrefYearMonthDay1987. \BBOQ\APACrefatitleKnowledge acquisition via incremental conceptual clustering Knowledge acquisition via incremental conceptual clustering.\BBCQ \APACjournalVolNumPagesMachine learning2139–172. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1990. \BBOQ\APACrefatitleThe structure and formation of natural categories The structure and formation of natural categories.\BBCQ \APACjournalVolNumPagesPsychology of Learning and Motivation26241–284. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2008. \BBOQ\APACrefatitleA rational analysis of rule-based concept learning A rational analysis of rule-based concept learning.\BBCQ \APACjournalVolNumPagesCognitive science321108–154. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleMental models of Boolean concepts Mental models of boolean concepts.\BBCQ \APACjournalVolNumPagesCognitive psychology63134–59. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2007. \BBOQ\APACrefatitleUnifying rational models of categorization via the hierarchical Dirichlet process Unifying rational models of categorization via the hierarchical dirichlet process.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2008. \BBOQ\APACrefatitleCategorization as nonparametric Bayesian density estimation Categorization as nonparametric bayesian density estimation.\BBCQ \APACjournalVolNumPagesThe probabilistic mind: Prospects for Bayesian cognitive science303–328. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1983. \BBOQ\APACrefatitleObjektidentifikation in künstlichen Begriffshierarchien. Objektidentifikation in künstlichen begriffshierarchien.\BBCQ \APACjournalVolNumPagesZeitschrift für Psychologie mit Zeitschrift für angewandte Psychologie. \PrintBackRefs\CurrentBib
- \APACinsertmetastarkemp2012exploring{APACrefauthors}Kemp, C. \APACrefYearMonthDay2012. \BBOQ\APACrefatitleExploring the conceptual universe. Exploring the conceptual universe.\BBCQ \APACjournalVolNumPagesPsychological review1194685. \PrintBackRefs\CurrentBib
- \APACinsertmetastarkruschke1992alcove{APACrefauthors}Kruschke, J\BPBIK. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleALCOVE: An exemplar-based connectionist model of category learning Alcove: An exemplar-based connectionist model of category learning.\BBCQ \BIn \APACrefbtitleConnectionist Psychology Connectionist psychology (\BPGS 107–138). \APACaddressPublisherPsychology Press. \PrintBackRefs\CurrentBib
- \APACinsertmetastarlangley2022computational{APACrefauthors}Langley, P. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleThe computational gauntlet of human-like learning The computational gauntlet of human-like learning.\BBCQ \BIn \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 36, \BPGS 12268–12273). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2004. \BBOQ\APACrefatitleSUSTAIN: a network model of category learning. Sustain: a network model of category learning.\BBCQ \APACjournalVolNumPagesPsychological review1112309. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleTrestle: a model of concept formation in structured domains Trestle: a model of concept formation in structured domains.\BBCQ \APACjournalVolNumPagesAdvances in Cognitive Systems4131–150. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleEfficient Induction of Language Models Via Probabilistic Concept Formation Efficient induction of language models via probabilistic concept formation.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2212.11937. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleConvolutional Cobweb: A Model of Incremental Learning from 2D Images Convolutional cobweb: A model of incremental learning from 2d images.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2201.06740. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1978. \BBOQ\APACrefatitleContext theory of classification learning. Context theory of classification learning.\BBCQ \APACjournalVolNumPagesPsychological review853207. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1982. \BBOQ\APACrefatitleBasic-level superiority in picture categorization Basic-level superiority in picture categorization.\BBCQ \APACjournalVolNumPagesJournal of verbal learning and verbal behavior2111–20. \PrintBackRefs\CurrentBib
- \APACinsertmetastarnosofsky1998optimal{APACrefauthors}Nosofsky, R\BPBIM. \APACrefYearMonthDay1998. \BBOQ\APACrefatitleOptimal performance and exemplar models of classification Optimal performance and exemplar models of classification.\BBCQ \APACjournalVolNumPagesRational models of cognition218–247. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1994. \BBOQ\APACrefatitleRule-plus-exception model of classification learning. Rule-plus-exception model of classification learning.\BBCQ \APACjournalVolNumPagesPsychological review101153. \PrintBackRefs\CurrentBib
- \APACinsertmetastarreed1972pattern{APACrefauthors}Reed, S\BPBIK. \APACrefYearMonthDay1972. \BBOQ\APACrefatitlePattern recognition and categorization Pattern recognition and categorization.\BBCQ \APACjournalVolNumPagesCognitive psychology33382–407. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1975. \BBOQ\APACrefatitleFamily resemblances: Studies in the internal structure of categories Family resemblances: Studies in the internal structure of categories.\BBCQ \APACjournalVolNumPagesCognitive psychology74573–605. \PrintBackRefs\CurrentBib
- \APACinsertmetastarrosseel2002mixture{APACrefauthors}Rosseel, Y. \APACrefYearMonthDay2002. \BBOQ\APACrefatitleMixture models of categorization Mixture models of categorization.\BBCQ \APACjournalVolNumPagesJournal of Mathematical Psychology462178–210. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2006. \BBOQ\APACrefatitleA more rational model of categorization A more rational model of categorization.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1961. \BBOQ\APACrefatitleLearning and memorization of classifications. Learning and memorization of classifications.\BBCQ \APACjournalVolNumPagesPsychological monographs: General and applied75131. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1998. \BBOQ\APACrefatitlePrototypes in the mist: The early epochs of category learning. Prototypes in the mist: The early epochs of category learning.\BBCQ \APACjournalVolNumPagesJournal of Experimental Psychology: Learning, memory, and cognition2461411. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2004. \BBOQ\APACrefatitleCategory learning in rhesus monkeys: a study of the Shepard, Hovland, and Jenkins (1961) tasks. Category learning in rhesus monkeys: a study of the shepard, hovland, and jenkins (1961) tasks.\BBCQ \APACjournalVolNumPagesJournal of Experimental Psychology: General1333398. \PrintBackRefs\CurrentBib
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.