Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RouteExplainer: An Explanation Framework for Vehicle Routing Problem (2403.03585v1)

Published 6 Mar 2024 in cs.LG, cs.AI, and math.OC

Abstract: The Vehicle Routing Problem (VRP) is a widely studied combinatorial optimization problem and has been applied to various practical problems. While the explainability for VRP is significant for improving the reliability and interactivity in practical VRP applications, it remains unexplored. In this paper, we propose RouteExplainer, a post-hoc explanation framework that explains the influence of each edge in a generated route. Our framework realizes this by rethinking a route as the sequence of actions and extending counterfactual explanations based on the action influence model to VRP. To enhance the explanation, we additionally propose an edge classifier that infers the intentions of each edge, a loss function to train the edge classifier, and explanation-text generation by LLMs. We quantitatively evaluate our edge classifier on four different VRPs. The results demonstrate its rapid computation while maintaining reasonable accuracy, thereby highlighting its potential for deployment in practical applications. Moreover, on the subject of a tourist route, we qualitatively evaluate explanations generated by our framework. This evaluation not only validates our framework but also shows the synergy between explanation frameworks and LLMs. See https://ntt-dkiku.github.io/xai-vrp for our code, datasets, models, and demo.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Daisuke Kikuta (5 papers)
  2. Hiroki Ikeuchi (9 papers)
  3. Kengo Tajiri (6 papers)
  4. Yuusuke Nakano (6 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.