Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Kinetic temperature and radial flow velocity estimation using identified hadrons and light (anti-)nuclei produced in relativistic heavy-ion collisions at RHIC and LHC (2403.02759v3)

Published 5 Mar 2024 in nucl-th and hep-ph

Abstract: We report the investigation of the kinetic freeze-out properties of identified hadrons ($\pi\pm$, $K\pm$ and $p(\bar p)$) along with light (anti-)nuclei $d (\bar d)$, $t (\bar t)$ and ${}{3}He$ in relativistic heavy-ion collisions at RHIC and LHC energies. A simultaneous fit is performed with the Blast-Wave (BW) model to the transverse momentum ({\ppt}) spectra of identified hadrons together with light (anti-)nuclei produced in $Au+Au$ collisions at {\sqrtsNN} = 7.7 -- 200 GeV at the RHIC and in $Pb+Pb$ collisions at $\sqrt{\mathrm{s}{{\mathrm{NN}}}}$ = 2.76 TeV at the LHC. The energy and centrality dependence of freeze-out parameters, i.e., kinetic freeze-out temperature ($T_{kin}$) and collective flow velocity $\langle \beta \rangle$ has been studied. It is observed that light (anti-)nuclei also participate in the collective expansion of the medium created in the collision when included in a common fit with the light hadrons. We observe a marginal rise in $T_{kin}$ and a slight decrease in $\langle \beta \rangle$ when compared to the values obtained from the fit to light hadrons. A similar $\langle \beta \rangle$ and significantly larger $T_{kin}$ is observed when a fit is performed to only protons and light (anti-)nuclei. Both, $T_{kin}$ and $\langle \beta \rangle$ show a weak energy dependence at most collision energies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. Production of Pions and Light Fragments at Large Angles in High-Energy Nuclear Collisions. Phys. Rev. C, 24:971–1009, 1981.
  2. W. Reisdorf et al. Systematics of central heavy ion collisions in the 1A GeV regime. Nucl. Phys. A, 848:366–427, 2010.
  3. J. Adamczewski-Musch et al. Directed, Elliptic, and Higher Order Flow Harmonics of Protons, Deuterons, and Tritons in Au+AuAuAu\mathrm{Au}+\mathrm{Au}roman_Au + roman_Au Collisions at sN⁢N=2.4⁢  ⁢GeVsubscript𝑠𝑁𝑁2.4  GeV\sqrt{{s}_{NN}}=2.4\text{ }\text{ }\mathrm{GeV}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.4 roman_GeV. Phys. Rev. Lett., 125:262301, 2020.
  4. N. Saito et al. Composite particle production in relativistic Au + Pt, Si + Pt, and p + Pt collisions. Phys. Rev. C, 49:3211–3218, 1994.
  5. S. Albergo et al. Light nuclei production in heavy ion collisions at relativistic energies. Phys. Rev. C, 65:034907, 2002.
  6. T. A. Armstrong et al. Measurements of light nuclei production in 11.5-A-GeV/c Au + Pb heavy ion collisions. Phys. Rev. C, 61:064908, 2000.
  7. T. A. Armstrong et al. Anti-deuteron yield at the AGS and coalescence implications. Phys. Rev. Lett., 85:2685–2688, 2000.
  8. M. J. Bennett et al. Light nuclei production in relativistic Au + nucleus collisions. Phys. Rev. C, 58:1155–1164, 1998.
  9. Jehanne Simon-Gillo et al. Deuteron and anti-deuteron production in CERN experiment NA44. Nucl. Phys. A, 590:483C–486C, 1995.
  10. S. V. Afanasiev et al. Deuteron production in central Pb + Pb collisions at 158-A-GeV. Phys. Lett. B, 486:22–28, 2000.
  11. R. Arsenescu et al. An Investigation of the anti-nuclei and nuclei production mechanism in Pb + Pb collisions at 158-A-GeV. New J. Phys., 5:150, 2003.
  12. T. Anticic et al. Energy and centrality dependence of deuteron and proton production in Pb + Pb collisions at relativistic energies. Phys. Rev. C, 69:024902, 2004.
  13. T. Anticic et al. Production of deuterium, tritium, and He3 in central Pb + Pb collisions at 20A,30A,40A,80A , and 158A GeV at the CERN Super Proton Synchrotron. Phys. Rev. C, 94(4):044906, 2016.
  14. C. Adler et al. Anti-deuteron and anti-He-3 production in s(NN)**(1/2) = 130-GeV Au+Au collisions. Phys. Rev. Lett., 87:262301, 2001. [Erratum: Phys.Rev.Lett. 87, 279902 (2001)].
  15. S. S. Adler et al. Deuteron and antideuteron production in Au + Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett., 94:122302, 2005.
  16. S. Afanasiev et al. Elliptic flow for phi mesons and (anti)deuterons in Au + Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett., 99:052301, 2007.
  17. B. I. Abelev et al. Yields and elliptic flow of d(anti-d) and He-3(anti-He-3) in Au + Au collisions at s(NN)**(1/2) = 200- GeV. 9 2009.
  18. H. Agakishiev et al. Observation of the antimatter helium-4 nucleus. Nature, 473:353, 2011. [Erratum: Nature 475, 412 (2011)].
  19. Jaroslav Adam et al. Beam energy dependence of (anti-)deuteron production in Au + Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C, 99(6):064905, 2019.
  20. Jaroslav Adam et al. Precision measurement of the mass difference between light nuclei and anti-nuclei with the ALICE experiment at the LHC. Nature Phys., 11(10):811–814, 2015.
  21. Jaroslav Adam et al. Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C, 93(2):024917, 2016.
  22. Jaroslav Adam et al. HΛ3superscriptsubscriptHΛ3{}^{3}_{\Lambda}\mathrm{H}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT roman_H and H¯Λ¯3superscriptsubscript¯H¯Λ3{}^{3}_{\bar{\Lambda}}\overline{\mathrm{H}}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT over¯ start_ARG roman_Λ end_ARG end_POSTSUBSCRIPT over¯ start_ARG roman_H end_ARG production in Pb-Pb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV. Phys. Lett. B, 754:360–372, 2016.
  23. Shreyasi Acharya et al. Measurement of deuteron spectra and elliptic flow in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV at the LHC. Eur. Phys. J. C, 77(10):658, 2017.
  24. Shreyasi Acharya et al. Production of deuterons, tritons, 33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTHe nuclei and their antinuclei in pp collisions at 𝑠𝑠\mathbf{\sqrt{{\textit{s}}}}square-root start_ARG s end_ARG = 0.9, 2.76 and 7 TeV. Phys. Rev. C, 97(2):024615, 2018.
  25. J. Adam et al. Beam-energy dependence of the directed flow of deuterons in Au+Au collisions. Phys. Rev. C, 102(4):044906, 2020.
  26. M. S. Abdallah et al. Light nuclei collectivity from sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 3 GeV Au+Au collisions at RHIC. Phys. Lett. B, 827:136941, 2022.
  27. Shreyasi Acharya et al. Measurement of anti-33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTHe nuclei absorption in matter and impact on their propagation in the Galaxy. Nature Phys., 19(1):61–71, 2023.
  28. Xiaofeng Luo and Nu Xu. Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC : An Overview. Nucl. Sci. Tech., 28(8):112, 2017.
  29. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions. Phys. Lett. B, 774:103–107, 2017.
  30. Light-nuclei production and search for the QCD critical point. Eur. Phys. J. A, 56(9):241, 2020.
  31. Light nuclei production as a probe of the QCD phase diagram. Phys. Lett. B, 781:499–504, 2018.
  32. Study of strange quark density fluctuations in Au + Au Collisions at sNNsubscriptsNN\sqrt{\textrm{s}_{{}_{\textrm{NN}}}}square-root start_ARG s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT NN end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 7.7–200 GeV from AMPT Model. Eur. Phys. J. A, 59(4):73, 2023.
  33. Explanation of the RHIC p(T) spectra in a thermal model with expansion. Phys. Rev. Lett., 87:272302, 2001.
  34. Observable implications of geometrical and dynamical aspects of freeze out in heavy ion collisions. Phys. Rev. C, 70:044907, 2004.
  35. Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions. Phys. Lett. B, 697:203–207, 2011.
  36. Decoding the phase structure of QCD via particle production at high energy. Nature, 561(7723):321–330, 2018.
  37. Nucleosynthesis in heavy-ion collisions at the LHC via the Saha equation. Phys. Lett. B, 800:135131, 2020.
  38. Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies. Phys. Rev. C, 84:054916, 2011.
  39. The thermal model on the verge of the ultimate test: particle production in Pb-Pb collisions at the LHC. J. Phys. G, 38:124081, 2011.
  40. Deuterons from High-Energy Proton Bombardment of Matter. Phys. Rev., 129:836–842, 1963.
  41. Joseph I. Kapusta. Mechanisms for deuteron production in relativistic nuclear collisions. Phys. Rev. C, 21:1301–1310, 1980.
  42. Production of antimatter 5,656{}^{5,6}start_FLOATSUPERSCRIPT 5 , 6 end_FLOATSUPERSCRIPTLi nuclei in central Au+Au collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Lett. B, 751:272–277, 2015.
  43. Light (anti-)nuclei production and flow in relativistic heavy-ion collisions. Phys. Rev. C, 92(6):064911, 2015.
  44. Spectra and flow of light nuclei in relativistic heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider. Phys. Rev. C, 98(5):054905, 2018.
  45. Light nuclei production in Pb+Pb collisions at sN⁢N=2.76subscript𝑠𝑁𝑁2.76\sqrt{s_{NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV. Eur. Phys. J. A, 54(10):175, 2018.
  46. Momentum dependence of light nuclei production in p−p𝑝𝑝p-pitalic_p - italic_p , p−P⁢b𝑝𝑃𝑏p-Pbitalic_p - italic_P italic_b , and Pb-Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C, 103(6):064908, 2021.
  47. Energy dependence of light (anti)nuclei and (anti)hypertriton production in the Au-Au collision from sN⁢N=11.5subscript𝑠𝑁𝑁11.5\sqrt{s_{NN}}=11.5square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 11.5 to 5020 GeV. Eur. Phys. J. A, 54(9):144, 2018.
  48. Light nuclei production in Au+Au collisions at sNN = 5–200 GeV from JAM model. Phys. Lett. B, 805:135452, 2020. [Erratum: Phys.Lett.B 829, 137132 (2022)].
  49. Light nuclei production in Au + Au collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 7.7-80 GeV from UrQMD model. Phys. Lett. B, 808:135668, 2020.
  50. Coalescence and flow in ultrarelativistic heavy ion collisions. Phys. Rev. C, 59:1585–1602, 1999.
  51. Relativistic kinetic approach to light nuclei production in high-energy nuclear collisions. 6 2021.
  52. Microscopic study of deuteron production in PbPb collisions at s=2.76⁢T⁢e⁢V𝑠2.76𝑇𝑒𝑉\sqrt{s}=2.76TeVsquare-root start_ARG italic_s end_ARG = 2.76 italic_T italic_e italic_V via hydrodynamics and a hadronic afterburner. Phys. Rev. C, 99(4):044907, 2019.
  53. Deuteron production in relativistic heavy ion collisions via stochastic multiparticle reactions. Phys. Rev. C, 104(3):034908, 2021.
  54. Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production versus Coalescence. Phys. Lett. B, 714:85–91, 2012.
  55. Thermal phenomenology of hadrons from 200-A/GeV S+S collisions. Phys. Rev. C, 48:2462–2475, 1993.
  56. L. Adamczyk et al. Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program. Phys. Rev. C, 96(4):044904, 2017.
  57. Betty Abelev et al. Centrality dependence of π𝜋\piitalic_π, K, p production in Pb-Pb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV. Phys. Rev. C, 88:044910, 2013.
  58. Vardan Khachatryan et al. Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC. Phys. Lett. B, 768:103–129, 2017.
  59. Betty Bezverkhny Abelev et al. Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p-Pb Collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Lett. B, 728:25–38, 2014.
  60. A Hydrodynamical assessment of 200-A/GeV collisions. Phys. Rev. C, 50:1675–1683, 1994.
  61. Study of the freeze-out process in heavy ion collisions at relativistic energies. J. Phys. Conf. Ser., 420:012041, 2013.
  62. Nonequilibrium kinetic freeze-out properties in relativistic heavy ion collisions from energies employed at the RHIC beam energy scan to those available at the LHC. Phys. Rev. C, 104(3):034901, 2021.
  63. Fast resonance decays in nuclear collisions. Eur. Phys. J. C, 79(3):284, 2019.
  64. Temperature and fluid velocity on the freeze-out surface from π𝜋\piitalic_π, K𝐾Kitalic_K, p𝑝pitalic_p spectra in pp, p-Pb and Pb-Pb collisions. Phys. Rev. C, 101(1):014910, 2020.
  65. Muhammad Abdulhamid et al. Beam Energy Dependence of Triton Production and Yield Ratio (Nt×Np/Nd2subscriptN𝑡subscriptN𝑝superscriptsubscriptN𝑑2\mathrm{N}_{t}\times\mathrm{N}_{p}/\mathrm{N}_{d}^{2}roman_N start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT × roman_N start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT / roman_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) in Au+Au Collisions at RHIC. Phys. Rev. Lett., 130:202301, 2023.
  66. F. James and M. Roos. Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations. Comput. Phys. Commun., 10:343–367, 1975.
  67. http://root.cern.ch.
  68. Smbat Grigoryan. A three component model for hadron pTsubscript𝑝Tp_{\mathrm{T}}italic_p start_POSTSUBSCRIPT roman_T end_POSTSUBSCRIPT-spectra in pp and Pb–Pb collisions at the LHC. Eur. Phys. J. A, 57(12):328, 2021.
  69. Jaroslav Adam et al. Bulk properties of the system formed in A⁢u+A⁢u𝐴𝑢𝐴𝑢Au+Auitalic_A italic_u + italic_A italic_u collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG =14.5 GeV at the BNL STAR detector. Phys. Rev. C, 101(2):024905, 2020.
  70. B. I. Abelev et al. Energy dependence of pi+-, p and anti-p transverse momentum spectra for Au+Au collisions at s(NN)**(1/2) = 62.4 and 200-GeV. Phys. Lett. B, 655:104–113, 2007.
  71. B. I. Abelev et al. Systematic Measurements of Identified Particle Spectra in p⁢p,d+𝑝𝑝superscript𝑑pp,d^{+}italic_p italic_p , italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT Au and Au+Au Collisions from STAR. Phys. Rev. C, 79:034909, 2009.
  72. A. Adare et al. Spectra and ratios of identified particles in Au+Au and d𝑑ditalic_d+Au collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Rev. C, 88(2):024906, 2013.
  73. Shreyasi Acharya et al. Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic p⁢p𝑝𝑝ppitalic_p italic_p collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Rev. C, 101(4):044907, 2020.
  74. Shreyasi Acharya et al. Light (anti)nuclei production in Pb-Pb collisions at sNN=5.02 TeV. Phys. Rev. C, 107(6):064904, 2023.
  75. Shreyasi Acharya et al. Measurement of (anti)alpha production in central Pb-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. 11 2023.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com