Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Information Lower Bounds for Robust Mean Estimation (2403.01892v1)

Published 4 Mar 2024 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: We prove lower bounds on the error of any estimator for the mean of a real probability distribution under the knowledge that the distribution belongs to a given set. We apply these lower bounds both to parametric and nonparametric estimation. In the nonparametric case, we apply our results to the question of sub-Gaussian estimation for distributions with finite variance to obtain new lower bounds in the small error probability regime, and present an optimal estimator in that regime. In the (semi-)parametric case, we use the Fisher information to provide distribution-dependent lower bounds that are constant-tight asymptotically, of order $\sqrt{2\log(1/\delta)/(nI)}$ where $I$ is the Fisher information of the distribution. We use known minimizers of the Fisher information on some nonparametric set of distributions to give lower bounds in cases such as corrupted distributions, or bounded/semi-bounded distributions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com