Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computing exact moments of local random quantum circuits via tensor networks (2403.01706v2)

Published 4 Mar 2024 in quant-ph

Abstract: A basic primitive in quantum information is the computation of the moments $\mathbb{E}_U[{\rm Tr}[U\rho U\dagger O]t]$. These describe the distribution of expectation values obtained by sending a state $\rho$ through a random unitary $U$, sampled from some distribution, and measuring the observable $O$. While the exact calculation of these moments is generally hard, if $U$ is composed of local random gates, one can estimate $\mathbb{E}_U[{\rm Tr}[U\rho U\dagger O]t]$ by performing Monte Carlo simulations of a Markov chain-like process. However, this approach can require a prohibitively large number of samples, or suffer from the sign problem. In this work, we instead propose to estimate the moments via tensor networks, where the local gates moment operators are mapped to small dimensional tensors acting on their local commutant bases. By leveraging representation theoretical tools, we study the local tensor dimension and we provide bounds for the bond dimension of the matrix product states arising from deep circuits. We compare our techniques against Monte Carlo simulations, showing that we can significantly out-perform them. Then, we showcase how tensor networks can exactly compute the second moment when $U$ is a quantum neural network acting on thousands of qubits and having thousands of gates. To finish, we numerically study the anticoncentration phenomena of circuits with orthogonal random gates, a task which cannot be studied via Monte Carlo due to sign problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandão, Random quantum circuits anticoncentrate in log depth, PRX Quantum 3, 010333 (2022).
  2. A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Physical Review X 8, 021014 (2018).
  3. J. Napp, Quantifying the barren plateau phenomenon for a model of unstructured variational ansätze, arXiv preprint arXiv:2203.06174  (2022).
  4. A. Letcher, S. Woerner, and C. Zoufal, From tight gradient bounds for parameterized quantum circuits to the absence of barren plateaus in qgans, arXiv preprint arXiv:2309.12681  (2023).
  5. E. R. Anschuetz and B. T. Kiani, Quantum variational algorithms are swamped with traps, Nature Communications 13, 7760 (2022).
  6. E. R. Anschuetz, Critical points in quantum generative models, International Conference on Learning Representations  (2022).
  7. A. A. Mele, Introduction to haar measure tools in quantum information: A beginner’s tutorial, arXiv preprint arXiv:2307.08956  (2023).
  8. D. García-Martín, M. Larocca, and M. Cerezo, Deep quantum neural networks form gaussian processes, arXiv preprint arXiv:2305.09957  (2023).
  9. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, Journal of High Energy Physics 9, 120 (2007).
  10. Y. Sekino and L. Susskind, Fast scramblers, Journal of High Energy Physics 2008, 065 (2008).
  11. W. Brown and O. Fawzi, Scrambling speed of random quantum circuits, arXiv preprint arXiv:1210.6644  (2012).
  12. N. Hunter-Jones, Unitary designs from statistical mechanics in random quantum circuits, arXiv preprint arXiv:1905.12053  (2019).
  13. B. Barak, C.-N. Chou, and X. Gao, Spoofing linear cross-entropy benchmarking in shallow quantum circuits, arXiv preprint arXiv:2005.02421  (2020).
  14. A. Harrow and S. Mehraban, Approximate unitary t𝑡titalic_t-designs by short random quantum circuits using nearest-neighbor and long-range gates, arXiv preprint arXiv:1809.06957  (2018).
  15. G. Pan and Z. Y. Meng, Sign problem in quantum monte carlo simulation, in Encyclopedia of Condensed Matter Physics (Second Edition) (Academic Press, 2024) second edition ed., pp. 879–893.
  16. R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals of Physics 349, 117 (2014).
  17. J. Biamonte and V. Bergholm, Tensor networks in a nutshell, arXiv preprint arXiv:1708.00006  (2017).
  18. B. Pozsgay, Quantum circuits with free fermions in disguise, arXiv preprint arXiv:2402.02984  (2024).
  19. R. Zeier and T. Schulte-Herbrüggen, Symmetry principles in quantum systems theory, Journal of mathematical physics 52, 113510 (2011).
  20. A. W. Harrow and R. A. Low, Random quantum circuits are approximate 2-designs, Communications in Mathematical Physics 291, 257 (2009).
  21. F. G. Brandao, A. W. Harrow, and M. Horodecki, Local random quantum circuits are approximate polynomial-designs, Communications in Mathematical Physics 346, 397 (2016).
  22. J. Haferkamp, Random quantum circuits are approximate unitary t𝑡titalic_t-designs in depth O⁢(n⁢t5+o⁢(1))𝑂𝑛superscript𝑡5𝑜1O\left(nt^{5+o(1)}\right)italic_O ( italic_n italic_t start_POSTSUPERSCRIPT 5 + italic_o ( 1 ) end_POSTSUPERSCRIPT ), Quantum 6, 795 (2022).
  23. J. Haah, Y. Liu, and X. Tan, Efficient approximate unitary designs from random pauli rotations, arXiv preprint arXiv:2402.05239  (2024).
  24. I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional neural networks, Nature Physics 15, 1273 (2019).
  25. Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Physical Review B 101, 104301 (2020).
  26. R. Jozsa and A. Miyake, Matchgates and classical simulation of quantum circuits, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, 3089 (2008).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube