Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improved spectral gaps for random quantum circuits: large local dimensions and all-to-all interactions (2012.05259v1)

Published 9 Dec 2020 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: Random quantum circuits are a central concept in quantum information theory with applications ranging from demonstrations of quantum computational advantage to descriptions of scrambling in strongly-interacting systems and black holes. The utility of random quantum circuits in these settings stems from their ability to rapidly generate quantum pseudo-randomness. In a seminal paper by Brand~ao, Harrow, and Horodecki, it was proven that the $t$-th moment operator of local random quantum circuits on $n$ qudits with local dimension $q$ has a spectral gap of at least $\Omega(n{-1}t{-5-3.1/\log(q)})$, which implies that they are efficient constructions of approximate unitary designs. As a first result, we use Knabe bounds for the spectral gaps of frustration-free Hamiltonians to show that $1D$ random quantum circuits have a spectral gap scaling as $\Omega(n{-1})$, provided that $t$ is small compared to the local dimension: $t2\leq O(q)$. This implies a (nearly) linear scaling of the circuit depth in the design order $t$. Our second result is an unconditional spectral gap bounded below by $\Omega(n{-1}\log{-1}(n) t{-\alpha(q)})$ for random quantum circuits with all-to-all interactions. This improves both the $n$ and $t$ scaling in design depth for the non-local model. We show this by proving a recursion relation for the spectral gaps involving an auxiliary random walk. Lastly, we solve the smallest non-trivial case exactly and combine with numerics and Knabe bounds to improve the constants involved in the spectral gap for small values of $t$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.