More global randomness from less random local gates (2410.24127v2)
Abstract: Random circuits giving rise to unitary designs are key tools in quantum information science and many-body physics. In this work, we investigate a class of random quantum circuits with a specific gate structure. Within this framework, we prove that one-dimensional structured random circuits with non-Haar random local gates can exhibit substantially more global randomness compared to Haar random circuits with the same underlying circuit architecture. In particular, we derive all the exact eigenvalues and eigenvectors of the second-moment operators for these structured random circuits under a solvable condition, by establishing a link to the Kitaev chain, and show that their spectral gaps can exceed those of Haar random circuits. Our findings have applications in improving circuit depth bounds for randomized benchmarking and the generation of approximate unitary 2-designs from shallow random circuits.
- J. Emerson, R. Alicki, and K. Życzkowski, Scalable noise estimation with random unitary operators, J. Opt. B 7, S347 (2005).
- E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and robust randomized benchmarking of quantum processes, Phys. Rev. Lett. 106, 180504 (2011).
- F. Arute et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505 (2019).
- B. Fefferman, S. Ghosh, and W. Zhan, Anti-concentration for the unitary Haar measure and applications to random quantum circuits (2024), arXiv:2407.19561 .
- D. Hangleiter and J. Eisert, Computational advantage of quantum random sampling, Rev. Mod. Phys. 95, 035001 (2023).
- H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Phys. 16, 1050 (2020).
- A. Zhao, N. C. Rubin, and A. Miyake, Fermionic partial tomography via classical shadows, Phys. Rev. Lett. 127, 110504 (2021).
- A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8, 021014 (2018).
- A. W. Harrow and R. A. Low, Random quantum circuits are approximate 2-designs, Comm. Math. Phys. 291, 257 (2009).
- F. G. Brandao, A. W. Harrow, and M. Horodecki, Local random quantum circuits are approximate polynomial-designs, Comm. Math. Phys. 346, 397 (2016).
- S. Mittal and N. Hunter-Jones, Local random quantum circuits form approximate designs on arbitrary architectures (2023), arXiv:2310.19355 .
- I. Marvian, Restrictions on realizable unitary operations imposed by symmetry and locality, Nature Phys. 18, 283 (2022).
- A. Hulse, H. Liu, and I. Marvian, Unitary designs from random symmetric quantum circuits (2024), arXiv:2408.14463 .
- J. Haferkamp, Random quantum circuits are approximate unitary t𝑡titalic_t-designs in depth O(nt5+o(1))𝑂𝑛superscript𝑡5𝑜1O(nt^{5+o(1)})italic_O ( italic_n italic_t start_POSTSUPERSCRIPT 5 + italic_o ( 1 ) end_POSTSUPERSCRIPT ), Quantum 6, 795 (2022).
- A. W. Harrow and S. Mehraban, Approximate unitary t-designs by short random quantum circuits using nearest-neighbor and long-range gates, Comm. Math. Phys. 401, 1531 (2023).
- T. Schuster, J. Haferkamp, and H.-Y. Huang, Random unitaries in extremely low depth (2024), arXiv:2407.07754 .
- N. LaRacuente and F. Leditzky, Approximate unitary k𝑘kitalic_k-designs from shallow, low-communication circuits (2024), arXiv:2407.07876 .
- D. Gross, K. Audenaert, and J. Eisert, Evenly distributed unitaries: On the structure of unitary designs, J. Math. Phys. 48, 052104 (2007).
- J. Haferkamp, On the moments of random quantum circuits and robust quantum complexity (2023), arXiv:2303.16944 .
- M. Heinrich, M. Kliesch, and I. Roth, Randomized benchmarking with random quantum circuits (2022), arXiv:2212.06181 .
- This first layer becomes unimportant when we consider a sufficiently large depth Ω(n)Ω𝑛\Omega(n)roman_Ω ( italic_n ), because of the left- and right-invariance of the Haar random unitaries.
- See Supplementary Materials for more details (URL to be added).
- R. Bhatia, Matrix analysis, Vol. 169 (Springer Science & Business Media, 2013).
- R. A. Low, Large deviation bounds for k-designs, Proc. Roy. Soc. A 465, 3289 (2009).
- P. Zanardi, C. Zalka, and L. Faoro, Entangling power of quantum evolutions, Phys. Rev. A 62, 030301 (2000).
- S. Aravinda, S. A. Rather, and A. Lakshminarayan, From dual-unitary to quantum Bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy, Phys. Rev. Res. 3, 043034 (2021).
- B. M. Terhal and D. P. DiVincenzo, Classical simulation of noninteracting-fermion quantum circuits, Phys. Rev. A 65, 032325 (2002).
- R. Jozsa and A. Miyake, Matchgates and classical simulation of quantum circuits, Proc. Roy. Soc. A 464, 3089 (2008).
- A. Y. Kitaev, Unpaired majorana fermions in quantum wires, Physics-Uspekhi 44, 131 (2001).
- B. Bertini, P. Kos, and T. Prosen, Exact correlation functions for dual-unitary lattice models in 1+1 dimensions, Phys. Rev. Lett. 123, 210601 (2019).
- P. W. Claeys and A. Lamacraft, Ergodic and nonergodic dual-unitary quantum circuits with arbitrary local hilbert space dimension, Phys. Rev. Lett. 126, 100603 (2021).
- R. Suzuki, K. Mitarai, and K. Fujii, Computational power of one-and two-dimensional dual-unitary quantum circuits, Quantum 6, 631 (2022).
- A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandão, Random quantum circuits anticoncentrate in log depth, PRX Quantum 3, 010333 (2022).
- A. Roy and A. J. Scott, Unitary designs and codes, Des. Code. Crypt. 53, 13 (2009).
- J. Bae, B. C. Hiesmayr, and D. McNulty, Linking entanglement detection and state tomography via quantum 2-designs, New J. Phys. 21, 013012 (2019).
- T. Zhou and D. J. Luitz, Operator entanglement entropy of the time evolution operator in chaotic systems, Phys. Rev. B 95, 094206 (2017).
- P. Richelli, K. Schoutens, and A. Zorzato, Brick wall quantum circuits with global fermionic symmetry, SciPost Physics 17, 087 (2024).
- S.-K. Jian, G. Bentsen, and B. Swingle, Linear growth of circuit complexity from Brownian dynamics, JHEP 2023, 1.
- M. Žnidarič, Exact convergence times for generation of random bipartite entanglement, Phys. Rev. A 78, 032324 (2008).
- R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge University Press, 2012).
- M. A. Graydon, J. Skanes-Norman, and J. J. Wallman, Clifford groups are not always 2-designs (2021), arXiv:2108.04200 .
- B. Collins and P. Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys. 264, 773 (2006).
- J. Eisert, Entangling power and quantum circuit complexity, Phys. Rev. Lett. 127, 020501 (2021).
- T. Prosen and I. Pižorn, Operator space entanglement entropy in a transverse ising chain, Phys. Rev. A 76, 032316 (2007).
- N. Hunter-Jones, Unitary designs from statistical mechanics in random quantum circuits (2019), arXiv:1905.12053 .
- S. Vardhan and S. Moudgalya, Entanglement dynamics from universal low-lying modes (2024), arXiv:2407.16763 .
- H. Katsura, D. Schuricht, and M. Takahashi, Exact ground states and topological order in interacting Kitaev/Majorana chains, Phys. Rev. B 92, 115137 (2015).
- J. Wouters, H. Katsura, and D. Schuricht, Exact ground states for interacting Kitaev chains, Phys. Rev. B 98, 155119 (2018).
- T. Zhou and A. Nahum, Emergent statistical mechanics of entanglement in random unitary circuits, Phys. Rev. B 99, 174205 (2019).
- M. A. Rampp and P. W. Claeys, Hayden-Preskill recovery in chaotic and integrable unitary circuit dynamics, Quantum 8, 1434 (2024).
- M. Merca, On some power sums of sine or cosine, Am. Math. Mon. 121, 244 (2014).