Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Recent Findings from Heavy-Flavor Angular Correlation Measurements in Hadronic Collisions (2403.01035v1)

Published 1 Mar 2024 in nucl-ex

Abstract: The study of angular correlations of heavy-flavor particles in hadronic collisions can provide crucial insight into the heavy quark production, showering, and hadronization processes. The comparison with model predictions allows us to discriminate among different approaches for heavy quark production and hadronization, as well as different treatments of the underlying event employed by the models to reproduce correlation observables. In ultra-relativistic heavy-ion collisions, where a deconfined state of matter, the quark--gluon plasma (QGP), is created, heavy-flavor correlations can shed light on the modification of the heavy quark fragmentation due to the interaction between charm and beauty quarks with the QGP constituents, as well as characterize their energy loss processes while traversing the medium. Insight into the possible emergence of collective-like mechanisms in smaller systems, resembling those observed in heavy-ion collisions, can also be obtained by performing correlation studies in high-multiplicity proton--proton and proton--nucleus collisions. In this review, the most recent and relevant measurements of heavy-flavor correlations performed in all collision systems at the LHC and RHIC will be presented, and the new understandings that they provide will be discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (193)
  1. The pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT spectrum in heavy-flavour hadroproduction. J. High Energy Phys. 1998, 05, 007. https://doi.org/10.1088/1126-6708/1998/05/007.
  2. The pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT spectrum in heavy flavor photoproduction. J. High Energy Phys. 2001, 03, 006. https://doi.org/10.1088/1126-6708/2001/03/006.
  3. Reconciling open charm production at the Fermilab Tevatron with QCD. Phys. Rev. Lett. 2006, 96, 012001. https://doi.org/10.1103/PhysRevLett.96.012001.
  4. Finite-mass effects on inclusive B𝐵Bitalic_B meson hadroproduction. Phys. Rev. D 2008, 77, 014011. https://doi.org/10.1103/PhysRevD.77.014011.
  5. Aggarwal, M.M.; et al. (STAR Collaboration) Measurement of the Bottom contribution to non-photonic electron production in p+p𝑝𝑝p+pitalic_p + italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 200 GeV. Phys. Rev. Lett. 2010, 105, 202301. https://doi.org/10.1103/PhysRevLett.105.202301.
  6. Adare, A.; et al. (PHENIX Collaboration) Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p𝑝𝑝p+pitalic_p + italic_p Collisions at s=200𝑠200\sqrt{s}=200square-root start_ARG italic_s end_ARG = 200 GeV. Phys. Rev. Lett. 2009, 103, 082002. https://doi.org/10.1103/PhysRevLett.103.082002.
  7. Adare, A.; et al. (PHENIX Collaboration) Measurement of high-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT single electrons from heavy-flavor decays in p+p𝑝𝑝p+pitalic_p + italic_p collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 200 GeV. Phys. Rev. Lett. 2006, 97, 252002. https://doi.org/10.1103/PhysRevLett.97.252002.
  8. Acosta, D.; et al. (CDF II Collaboration) Measurement of prompt charm meson production cross sections in p⁢p¯𝑝¯𝑝p\bar{p}italic_p over¯ start_ARG italic_p end_ARG collisions at s=1.96𝑠1.96\sqrt{s}=1.96square-root start_ARG italic_s end_ARG = 1.96 TeV. Phys. Rev. Lett. 2003, 91, 241804. https://doi.org/10.1103/PhysRevLett.91.241804.
  9. Charm cross-sections for the Tevatron Run II. J. High Energy Phys. 2003, 09, 006. https://doi.org/10.1088/1126-6708/2003/09/006.
  10. Acosta, D.; et al. (CDF Collaboration) Measurement of the J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ meson and b−limit-from𝑏b-italic_b -hadron production cross sections in p⁢p¯𝑝¯𝑝p\bar{p}italic_p over¯ start_ARG italic_p end_ARG collisions at s=1960𝑠1960\sqrt{s}=1960square-root start_ARG italic_s end_ARG = 1960 GeV. Phys. Rev. D 2005, 71, 032001. https://doi.org/10.1103/PhysRevD.71.032001.
  11. Acharya, S.; et al. (ALICE Collaboration) Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Lett. B 2020, 804, 135377. https://doi.org/10.1016/j.physletb.2020.135377.
  12. Sirunyan, A.M.; et al. (CMS Collaboration) Nuclear modification factor of D00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT mesons in PbPb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Lett. B 2018, 782, 474–496. https://doi.org/10.1016/j.physletb.2018.05.074.
  13. Aaij, R.; et al. (LHCb Collaboration) Measurements of prompt charm production cross-sections in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV. J. High Energy Phys. 03, 2016, 159; Erratum in J. High Energy Phys. 2016, 09, 13; Erratum in J. High Energy Phys. 2017, 05, 74. https://doi.org/10.1007/JHEP03(2016)159.
  14. Acharya, S.; et al. (ALICE Collaboration) Measurement of inclusive charged-particle b-jet production in pp and p–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. J. High Energy Phys. 2022, 01, 178. https://doi.org/10.1007/JHEP01(2022)178.
  15. Acharya, S.; et al. (ALICE Collaboration) Measurement of the production of charm jets tagged with D0superscriptD0{\rm D^{0}}roman_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT mesons in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 5.02 and 13 TeV. arXiv 2022, arXiv:2204.10167.
  16. Acharya, S.; et al. (ALICE Collaboration) Measurement of D0superscriptD0{{\mathrm{D}}^{0}}roman_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , D+superscriptD{{\mathrm{D}}^{+}}roman_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT , D*+superscriptDabsent{{\mathrm{D}}^{*+}}roman_D start_POSTSUPERSCRIPT * + end_POSTSUPERSCRIPT and Ds+subscriptsuperscriptDs{{\mathrm{D}}^{+}_{\mathrm{s}}}roman_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT production in pp collisions at 𝑠=5.02⁢TeV𝑠5.02TeV{\sqrt{{\textit{s}}}~{}=~{}5.02~{}{\mathrm{TeV}}}square-root start_ARG s end_ARG = 5.02 roman_TeV with ALICE. Eur. Phys. J. C 2019, 79, 388. https://doi.org/10.1140/epjc/s10052-019-6873-6.
  17. Acharya, S.; et al. (ALICE Collaboration) Production of muons from heavy-flavour hadron decays in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 5.02 TeV. J. High Energy Phys. 2019, 09, 008. https://doi.org/10.1007/JHEP09(2019)008.
  18. Acharya, S.; et al. (ALICE Collaboration) Measurement of beauty and charm production in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 5.02 TeV via non-prompt and prompt D mesons. J. High Energy Phys. 2021, 005, 220. https://doi.org/10.1007/JHEP05(2021)220.
  19. Abelev, B.; et al. (ALICE Collaboration) Heavy flavour decay muon production at forward rapidity in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 7 TeV. Phys. Lett. B 2012, 708, 265–275. https://doi.org/10.1016/j.physletb.2012.01.063.
  20. Abelev, B.; et al. (ALICE Collaboration) Measurement of charm production at central rapidity in pp collisions at s=2.76𝑠2.76\sqrt{s}=2.76square-root start_ARG italic_s end_ARG = 2.76 TeV. J. High Energy Phys. 2012, 007, 191. https://doi.org/10.1007/JHEP07(2012)191.
  21. Abelev, B.; et al. (ALICE Collaboration) Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV. Phys. Rev. D 2012, 86, 112007. https://doi.org/10.1103/PhysRevD.86.112007.
  22. Aaij, R.; et al. (LHCb collaboration) Measurements of prompt charm production cross-sections in pp collisions at s=5𝑠5\sqrt{s}=5square-root start_ARG italic_s end_ARG = 5 TeV. J. High Energy Phys. 2017, 006, 147. https://doi.org/10.1007/JHEP06(2017)147.
  23. Abelev, B.; et al. (ALICE Collaboration) Measurement of electrons from beauty hadron decays in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV. Phys. Lett. B 2013, 721, 13–23; Erratum in Phys. Lett. B 2016, 763, 507–509. https://doi.org/10.1016/j.physletb.2013.01.069.
  24. Abelev, B.; et al. (ALICE Collaboration) Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at s=2.76𝑠2.76\sqrt{s}=2.76square-root start_ARG italic_s end_ARG = 2.76 TeV. Phys. Rev. D 2015, 91, 012001. https://doi.org/10.1103/PhysRevD.91.012001.
  25. Aaij, R.; et al. (LHCb collaboration) Measurement of the B±superscript𝐵plus-or-minusB^{\pm}italic_B start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT production cross-section in pppp\rm{pp}roman_pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV. J. High Energy Phys. 2012, 004, 093. https://doi.org/10.1007/JHEP04(2012)093.
  26. Aad, G.; et al. (ATLAS collaboration) Measurement of the b-hadron production cross section using decays to D*⁢μ−⁢Xsuperscript𝐷superscript𝜇𝑋D^{*}\mu^{-}Xitalic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_X final states in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector. Nucl. Phys. B 2012, 864, 341–381. https://doi.org/10.1016/j.nuclphysb.2012.07.009.
  27. Aad, G.; et al. (ATLAS collaboration) Measurement of the differential cross-section of B+superscript𝐵B^{+}italic_B start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT meson production in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV at ATLAS. J. High Energy Phys. 2013, 010, 042. https://doi.org/10.1007/JHEP10(2013)042.
  28. Chatrchyan, S.; et al. (ATLAS collaboration) Measurement of the cross section for production of b⁢b¯𝑏¯𝑏b\bar{b}italic_b over¯ start_ARG italic_b end_ARGX𝑋Xitalic_X, decaying to muons in pppp\rm{pp}roman_pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV. J. High Energy Phys. 2012, 006, 110. https://doi.org/10.1007/JHEP06(2012)110.
  29. Khachatryan, V.; et al. (CMS Collaboration) Measurement of the B+superscript𝐵B^{+}italic_B start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT Production Cross Section in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV. Phys. Rev. Lett. 2011, 106, 112001. https://doi.org/10.1103/PhysRevLett.106.112001.
  30. Chatrchyan, S.; et al. (CMS Collaboration) Measurement of the B0superscript𝐵0B^{0}italic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT production cross section in pppp\rm{pp}roman_pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV. Phys. Rev. Lett. 2011, 106, 252001. https://doi.org/10.1103/PhysRevLett.106.252001.
  31. Chatrchyan, S.; et al. (CMS Collaboration) Measurement of the Bs0superscriptsubscript𝐵𝑠0{B}_{s}^{0}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Production Cross Section with Bs0→J/ψ⁢ϕ→superscriptsubscript𝐵𝑠0𝐽𝜓italic-ϕ{B}_{s}^{0}\rightarrow J/\psi\phiitalic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_J / italic_ψ italic_ϕ Decays in pppp\rm{pp}roman_pp collisions at s=7⁢  ⁢TeV𝑠7  TeV\sqrt{s}\mathbf{~{}=~{}}7\text{ }\text{ }\mathrm{TeV}square-root start_ARG italic_s end_ARG = 7 roman_TeV. Phys. Rev. D 2011, 84, 052008. https://doi.org/10.1103/PhysRevD.84.052008.
  32. Khachatryan, V.; et al. (CMS Collaboration) Measurement of the total and differential inclusive B+superscript𝐵B^{+}italic_B start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT hadron cross sections in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV. Phys. Lett. B 2017, 771, 435–456. https://doi.org/10.1016/j.physletb.2017.05.074.
  33. Theoretical predictions for charm and bottom production at the LHC. J. High Energy Phys. 2012, 010, 137. https://doi.org/10.1007/JHEP10(2012)137.
  34. Kniehl, B.A. Inclusive production of heavy-flavored hadrons at NLO in the GM-VFNS. In Proceedings of the 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008), London, UK, 7–11 April 2008; p. 195. https://doi.org/10.3360/dis.2008.195.
  35. Inclusive B-Meson Production at the LHC in the GM-VFN Scheme. Phys. Rev. D 2011, 84, 094026. https://doi.org/10.1103/PhysRevD.84.094026.
  36. Inclusive lepton production from heavy-hadron decay in pp collisions at the LHC. Nucl. Phys. B 2013, 872, 253–264; Erratum in Nucl. Phys. B 2013, 876, 334–337. https://doi.org/10.1016/j.nuclphysb.2013.04.002.
  37. Inclusive charmed-meson production from bottom hadron decays at the LHC. J. Phys. G Nucl. Part. Phys. 2014, 41, 075006. https://doi.org/10.1088/0954-3899/41/7/075006.
  38. Adare, A.; et al. (PHENIX Collaboration) Heavy Quark Production in p+p𝑝𝑝p+pitalic_p + italic_p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Rev. C 2011, 84, 044905. https://doi.org/10.1103/PhysRevC.84.044905.
  39. Abelev, B.I.; et al. (STAR Collaboration) Transverse momentum and centrality dependence of high-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT non-photonic electron suppression in Au+Au collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Rev. Lett. 2007, 98, 192301; Erratum in Phys. Rev. Lett. 2011, 106, 159902. https://doi.org/10.1103/PhysRevLett.98.192301.
  40. Adamczyk, L.; et al. (STAR Collaboration) Elliptic flow of electrons from heavy-flavor hadron decays in Au + Au collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200, 62.4, and 39 GeV. Phys. Rev. C 2017, 95, 034907. https://doi.org/10.1103/PhysRevC.95.034907.
  41. Acharya, S.; et al. (ALICE Collaboration) Prompt D00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT, D+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT, and D*+absent{}^{*+}start_FLOATSUPERSCRIPT * + end_FLOATSUPERSCRIPT production in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. J. High Energy Phys. 2022, 001, 174. https://doi.org/10.1007/JHEP01(2022)174.
  42. Acharya, S.; et al. (ALICE Collaboration) Measurement of prompt Ds+superscriptsubscript𝐷𝑠D_{s}^{+}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT-meson production and azimuthal anisotropy in Pb–Pb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Lett. B 2022, 827, 136986. https://doi.org/10.1016/j.physletb.2022.136986.
  43. Acharya, S.; et al. (ALICE Collaboration) D𝐷Ditalic_D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV . Phys. Rev. Lett. 2018, 120, 102301. https://doi.org/10.1103/PhysRevLett.120.102301.
  44. Acharya, S.; et al. (ALICE Collaboration) Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Lett. B 2021, 813, 136054. https://doi.org/10.1016/j.physletb.2020.136054.
  45. Energy loss of a heavy fermion in a hot plasma. Phys. Rev. D 1991, 44, 1298–1310. https://doi.org/10.1103/PhysRevD.44.1298.
  46. Peshier, A. The QCD collisional energy loss revised. Phys. Rev. Lett. 2006, 97, 212301. https://doi.org/10.1103/PhysRevLett.97.212301.
  47. Collisional energy loss of a fast heavy quark in a quark-gluon plasma. Phys. Rev. D 2008, 77, 114017. https://doi.org/10.1103/PhysRevD.77.114017.
  48. Multiple collisions and induced gluon Bremsstrahlung in QCD. Nucl. Phys. B 1994, 420, 583–614. https://doi.org/10.1016/0550-3213(94)90079-5.
  49. Induced gluon radiation in a QCD medium. Phys. Lett. B 1995, 345, 277–286. https://doi.org/10.1016/0370-2693(94)01617-L.
  50. NonAbelian energy loss at finite opacity. Phys. Rev. Lett. 2000, 85, 5535–5538. https://doi.org/10.1103/PhysRevLett.85.5535.
  51. Heavy quark colorimetry of QCD matter. Phys. Lett. B 2001, 85, 199–206. https://doi.org/10.1016/S0370-2693(01)01130-3.
  52. Low-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT collective flow induces high-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT jet quenching. Phys. Rev. C 2005, 72, 064910. https://doi.org/10.1103/PhysRevC.72.064910.
  53. Heavy quark energy loss in nuclear medium. Phys. Rev. Lett. 2004, 93, 072301. https://doi.org/10.1103/PhysRevLett.93.072301.
  54. Azimuthal correlations of heavy quarks in Pb + Pb collisions at s=2.76𝑠2.76\sqrt{s}=2.76square-root start_ARG italic_s end_ARG = 2.76 TeV at the CERN Large Hadron Collider. Phys. Rev. C 2014, 90, 024907. https://doi.org/10.1103/PhysRevC.90.024907.
  55. Modeling of heavy-flavor pair correlations in Au-Au collisions at 200A GeV at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2015, 92, 054909. https://doi.org/10.1103/PhysRevC.92.054909.
  56. EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions. J. High Energy Phys. 2009, 04, 65. https://doi.org/10.1088/1126-6708/2009/04/065.
  57. Nuclear parton distributions at next-to-leading order. Phys. Rev. D 2004, 69, 074028. https://doi.org/10.1103/PhysRevD.69.074028.
  58. Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order. Phys. Rev. C 2007, 76, 065207. https://doi.org/10.1103/PhysRevC.76.065207.
  59. Heavy quark pair production in high energy pA collisions: Open heavy flavors. Nucl. Phys. A 2013, 920, 78–93. https://doi.org/10.1016/j.nuclphysa.2013.10.006.
  60. QCD saturation at the LHC: Comparisons of models to p + p and A + A data and predictions for p + Pb collisions. Phys. Lett. B 2012, 710, 125–133; Erratum in Phys. Lett. B 2013, 718, 1154. https://doi.org/10.1016/j.physletb.2012.02.047.
  61. CGC predictions for p + Pb collisions at the LHC. Nucl. Phys. A 2013, 897, 1–27. https://doi.org/10.1016/j.nuclphysa.2012.09.012.
  62. Rezaeian, A.H. CGC predictions for p+A collisions at the LHC and signature of QCD saturation. Phys. Lett. B 2013, 718, 1058–1069. https://doi.org/10.1016/j.physletb.2012.11.066.
  63. Parton Propagation and Fragmentation in QCD Matter. Riv. Nuovo Cim. 2009, 32, 439–554. https://doi.org/10.1393/ncr/i2009-10048-0.
  64. et al. C A Salgado; J Alvarez-Muñiz; F Arleo; N Armesto; M Botje; M Cacciari; J Campbell; C Carli; B Cole; D D’Enterria; Proton-Nucleus Collisions at the LHC: Scientific Opportunities and Requirements. J. Phys. G 2012, 39, 015010. https://doi.org/10.1088/0954-3899/39/1/015010.
  65. Vogt, R. Heavy Flavor Azimuthal Correlations in Cold Nuclear Matter. Phys. Rev. C 2018, 98, 034907. https://doi.org/10.1103/PhysRevC.98.034907.
  66. Vogt, R. b⁢b¯𝑏¯𝑏b\overline{b}italic_b over¯ start_ARG italic_b end_ARG kinematic correlations in cold nuclear matter. Phys. Rev. C 2020, 101, 024910. https://doi.org/10.1103/PhysRevC.101.024910.
  67. Linearly polarized small-x𝑥xitalic_x gluons in forward heavy-quark pair production. Phys. Rev. D 2018, 97, 014004. https://doi.org/10.1103/PhysRevD.97.014004.
  68. Aidala, C.; et al. (PHENIX Collaboration) Measurements of μ⁢μ𝜇𝜇\mu\muitalic_μ italic_μ pairs from open heavy flavor and Drell-Yan in p+p𝑝𝑝p+pitalic_p + italic_p collisions at s=200𝑠200\sqrt{s}=200square-root start_ARG italic_s end_ARG = 200 GeV. Phys. Rev. D 2019, 99, 072003. https://doi.org/10.1103/PhysRevD.99.072003.
  69. Aaboud, M.; et al. (ATLAS Collaboration) Measurement of b𝑏bitalic_b-hadron pair production with the ATLAS detector in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV. J. High Energy Phys. 2017, 011, 62. https://doi.org/10.1007/JHEP11(2017)062.
  70. Khachatryan, V.; et al. (CMS Collaboration) Measurement of B⁢B¯𝐵¯𝐵B\bar{B}italic_B over¯ start_ARG italic_B end_ARG Angular Correlations based on Secondary Vertex Reconstruction at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV. J. High Energy Phys. 2011, 003, 136. https://doi.org/10.1007/JHEP03(2011)136.
  71. Aaij, R.; et al. (LHCb Collaboration) Observation of double charm production involving open charm in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV. J. High Energy Phys. 2012, 006, 141; Addendum in J. High Energy Phys. 2014, 003, 108. https://doi.org/10.1007/JHEP06(2012)141.
  72. Aaij, R.; et al. (LHCb Collaboration) Study of b⁢b¯𝑏¯𝑏b\bar{b}italic_b over¯ start_ARG italic_b end_ARG correlations in high energy proton-proton collisions. J. High Energy Phys. 2017, 011, 30. https://doi.org/10.1007/JHEP11(2017)030.
  73. Aaij, R.; et al. (LHCb Collaboration) Observation of Enhanced Double Parton Scattering in Proton-Lead Collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG =8.16 TeV. Phys. Rev. Lett. 2020, 125, 212001. https://doi.org/10.1103/PhysRevLett.125.212001.
  74. PYTHIA 6.4 Physics and Manual. J. High Energy Phys. 2006, 05, 26. https://doi.org/10.1088/1126-6708/2006/05/026.
  75. A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. J. High Energy Phys. 2007, 09, 126. https://doi.org/10.1088/1126-6708/2007/09/126.
  76. Pair Production of J/psi as a Probe of Double Parton Scattering at LHCb. Phys. Rev. Lett. 2011, 107, 082002. https://doi.org/10.1103/PhysRevLett.107.082002.
  77. Double heavy meson production through double parton scattering in hadronic collisions. Phys. Lett. B 2011, 705, 116–119. https://doi.org/10.1016/j.physletb.2011.09.106.
  78. Novoselov, A. Double parton scattering as a source of quarkonia pairs in LHCb. arXiv 2011, arXiv:1106.2184.
  79. Production of two c⁢c¯𝑐¯𝑐c\bar{c}italic_c over¯ start_ARG italic_c end_ARG pairs in double-parton scattering. Phys. Rev. D 2012, 85, 094034. https://doi.org/10.1103/PhysRevD.85.094034.
  80. Heavy-Quarkonium Production in High Energy Proton-Proton Collisions at RHIC. Phys. Rev. D 2010, 81, 051502. https://doi.org/10.1103/PhysRevD.81.051502.
  81. The Intrinsic Charm of the Proton. Phys. Lett. B 1980, 93, 451–455. https://doi.org/10.1016/0370-2693(80)90364-0.
  82. Production and hadronization of heavy quarks. Eur. Phys. J. C 2000, 17, 137–161. https://doi.org/10.1007/s100520000460.
  83. Shao, H.S. Probing impact-parameter dependent nuclear parton densities from double parton scatterings in heavy-ion collisions. Phys. Rev. D 2020, 101, 054036. https://doi.org/10.1103/PhysRevD.101.054036.
  84. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 2007, 57, 205–243. https://doi.org/10.1146/annurev.nucl.57.090506.123020.
  85. Heavy quark production in p⁢A𝑝𝐴pAitalic_p italic_A collisions: the double parton scattering contribution. Mod. Phys. Lett. A 2018, 33, 1850141. https://doi.org/10.1142/S0217732318501419.
  86. Double D-meson production in proton-proton and proton-lead collisions at the LHC. Phys. Lett. B 2020, 800, 135084. https://doi.org/10.1016/j.physletb.2019.135084.
  87. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008, 178, 852–867. https://doi.org/10.1016/j.cpc.2008.01.036.
  88. Bahr, M.; et al. Herwig++ Physics and Manual. Eur. Phys. J. C 2008, 58, 639–707. https://doi.org/10.1140/epjc/s10052-008-0798-9.
  89. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energy Phys. 2014, 007, 79. https://doi.org/10.1007/JHEP07(2014)079.
  90. Event generation with SHERPA 1.1. J. High Energy Phys. 2009, 02, 7. https://doi.org/10.1088/1126-6708/2009/02/007.
  91. A Parton shower algorithm based on Catani-Seymour dipole factorisation. J. High Energy Phys. 2008, 03, 38. https://doi.org/10.1088/1126-6708/2008/03/038.
  92. MadEvent: Automatic event generation with MadGraph. J. High Energy Phys. 2003, 02, 27. https://doi.org/10.1088/1126-6708/2003/02/027.
  93. MadGraph/MadEvent v4: The New Web Generation. J. High Energy Phys. 2007, 09, 28. https://doi.org/10.1088/1126-6708/2007/09/028.
  94. Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 2002, 06, 29. https://doi.org/10.1088/1126-6708/2002/06/029.
  95. Matching NLO QCD and parton showers in heavy flavor production. J. High Energy Phys. 2003, 08, 7. https://doi.org/10.1088/1126-6708/2003/08/007.
  96. The MC and NLO 3.4 Event Generator. arXiv 2008, arXiv:0812.0770.
  97. Hadronic final state predictions from CCFM: The Hadron level Monte Carlo generator CASCADE. Eur. Phys. J. C 2001, 19, 351–360. https://doi.org/10.1007/s100520100604.
  98. Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. J. High Energy Phys. 2015, 011, 9. https://doi.org/10.1007/JHEP11(2015)009.
  99. Hadronization in heavy ion collisions: Recombination and fragmentation of partons. Phys. Rev. Lett. 2003, 90, 202303. https://doi.org/10.1103/PhysRevLett.90.202303.
  100. Parton coalescence at RHIC. Phys. Rev. C 2003, 68, 034904. https://doi.org/10.1103/PhysRevC.68.034904.
  101. Quark Coalescence based on a Transport Equation. Phys. Lett. B 2007, 655, 126–131. https://doi.org/10.1016/j.physletb.2007.07.043.
  102. Adam, J.; et al. (STAR Collaboration) Observation of Ds±/D0superscriptsubscript𝐷𝑠plus-or-minussuperscript𝐷0D_{s}^{\pm}/D^{0}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT enhancement in Au+Au collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{{}_{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Rev. Lett. 2021, 127, 092301. https://doi.org/10.1103/PhysRevLett.127.092301.
  103. Acharya, S.; et al. (ALICE Collaboration) Constraining hadronization mechanisms with ΛΛ\Lambdaroman_Λc+/D0 production ratios in Pb–Pb collisions at sNN=5.02 TeV. Phys. Lett. B 2023, 839, 137796. https://doi.org/10.1016/j.physletb.2023.137796.
  104. Acharya, S.; et al. (ALICE Collaboration) Investigating charm production and fragmentation via azimuthal correlations of prompt D mesons with charged particles in pp collisions at s=13s13\sqrt{\rm s}=13square-root start_ARG roman_s end_ARG = 13 TeV. Eur. Phys. J. C 2022, 82, 335. https://doi.org/10.1140/epjc/s10052-022-10267-3.
  105. Acharya, S.; et al. (ALICE Collaboration) Azimuthal correlations of prompt D mesons with charged particles in pp and p–Pb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Eur. Phys. J. C 2020, 80, 979. https://doi.org/10.1140/epjc/s10052-020-8118-0.
  106. Adam, J.; et al. (ALICE Collaboration) Measurement of azimuthal correlations of D mesons and charged particles in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV and p-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Eur. Phys. J. C 2017, 77, 245. https://doi.org/10.1140/epjc/s10052-017-4779-8.
  107. Nason, P. A New method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 2004, 11, 40. https://doi.org/10.1088/1126-6708/2004/11/040.
  108. Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. J. High Energy Phys. 2007, 11, 70. https://doi.org/10.1088/1126-6708/2007/11/070.
  109. Johannes Bellm; Stefan Gieseke; David Grellscheid; Simon Plätzer; Michael Rauch; Christian Reuschle; Peter Richardson; Peter Schichtel; Michael H. Seymour; Andrzej Siódmok; Alexandra Wilcock; Nadine Fischer; Marco A. Harrendorf; Graeme Nail; Andreas Papaefstathiou & Daniel Rauch. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C 2016, 76, 196. https://doi.org/10.1140/epjc/s10052-016-4018-8.
  110. Parton based Gribov-Regge theory. Phys. Rept. 2001, 350, 93–289. https://doi.org/10.1016/S0370-1573(00)00122-8.
  111. Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions. Phys. Rev. C 2010, 82, 044904. https://doi.org/10.1103/PhysRevC.82.044904.
  112. Acharya, S.; et al. (ALICE Collaboration) Azimuthal Anisotropy of Heavy-Flavor Decay Electrons in p𝑝pitalic_p-Pb Collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Rev. Lett. 2019, 122, 072301. https://doi.org/10.1103/PhysRevLett.122.072301.
  113. Aad, G.; et al. (ATLAS Collaboration) Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector. Phys. Rev. Lett. 2020, 124, 082301. https://doi.org/10.1103/PhysRevLett.124.082301.
  114. Sirunyan, A.M.; et al. (CMS Collaboration) Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{{}_{\mathrm{NN}}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT roman_NN end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 8.16 TeV. Phys. Rev. Lett. 2018, 121, 082301. https://doi.org/10.1103/PhysRevLett.121.082301.
  115. Sirunyan, A.M.; et al. (CMS Collaboration) Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies. Phys. Lett. B 2021, 813, 136036. https://doi.org/10.1016/j.physletb.2020.136036.
  116. Acharya, S.; et al. (ALICE Collaboration) Azimuthal correlations of heavy-flavor hadron decay electrons with charged particles in pp and p–Pb collisions at sNNsubscript𝑠NN{\sqrt{s_{\mathrm{{NN}}}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Eur. Phys. J. C 2023, 83, 741. https://doi.org/10.1140/epjc/s10052-023-11835-x.
  117. Jet Quenching in Dense Matter. Phys. Lett. B 1990, 243, 432–438. https://doi.org/10.1016/0370-2693(90)91409-5.
  118. Radiative energy loss and pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT broadening of high-energy partons in nuclei. Nucl. Phys. B 1997, 484, 265–282. https://doi.org/10.1016/S0550-3213(96)00581-0.
  119. Quark Damping and Energy Loss in the High Temperature QCD. Nucl. Phys. B 1991, 351, 491–506. https://doi.org/10.1016/S0550-3213(05)80031-8.
  120. Energy loss of a heavy quark in the quark-gluon plasma. Phys. Rev. D 1991, 44, R2625. https://doi.org/10.1103/PhysRevD.44.R2625.
  121. Jet Wake from Linearized Hydrodynamics. J. High Energy Phys. 2021, 005, 230. https://doi.org/10.1007/JHEP05(2021)230.
  122. Diffusion of charm quarks in jets in high-energy heavy-ion collisions. Eur. Phys. J. C 2019, 79, 789. https://doi.org/10.1140/epjc/s10052-019-7312-4.
  123. AdS/CFT predictions for azimuthal and momentum correlations of b⁢b¯𝑏¯𝑏b\bar{b}italic_b over¯ start_ARG italic_b end_ARG pairs in heavy ion collisions. Nucl. Part. Phys. Proc. 2017, 289–290, 233–236. https://doi.org/10.1016/j.nuclphysbps.2017.05.052.
  124. Open Heavy-Flavor Production in Heavy-Ion Collisions. Ann. Rev. Nucl. Part. Sci. 2019, 69, 417–445. https://doi.org/10.1146/annurev-nucl-101918-023806.
  125. Adam, J.; et al. (ALICE Collaboration) Transverse momentum dependence of D-meson production in Pb-Pb collisions at sNN=subscriptsNNabsent\sqrt{{\mathrm{s}}_{\mathrm{NN}}}=square-root start_ARG roman_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV. J. High Energy Phys. 2016, 003, 81. https://doi.org/10.1007/JHEP03(2016)081.
  126. Adam, J.; et al. (ALICE Collaboration) Centrality dependence of high-pT𝑇{}_{T}start_FLOATSUBSCRIPT italic_T end_FLOATSUBSCRIPT D meson suppression in Pb-Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{N}\mathrm{N}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV. J. High Energy Phys. 2015, 011, 205; Addendum in J. High Energy Phys. 2017, 06, 32. https://doi.org/10.1007/JHEP11(2015)205.
  127. Sirunyan, A.M.; et al. (CMS Collaboration) Measurement of the B±superscript𝐵plus-or-minus{B}^{\pm}italic_B start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT Meson Nuclear Modification Factor in Pb-Pb Collisions at sN⁢N=5.02⁢  ⁢TeVsubscript𝑠𝑁𝑁5.02  TeV\sqrt{{s}_{NN}}=5.02\text{ }\text{ }\mathrm{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 roman_TeV. Phys. Rev. Lett. 2017, 119, 152301. https://doi.org/10.1103/PhysRevLett.119.152301.
  128. Khachatryan, V.; et al. (CMS Collaboration) Suppression and azimuthal anisotropy of prompt and nonprompt J/ψJ𝜓{\mathrm{J}}/\psiroman_J / italic_ψ production in PbPb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{{s_{{}_{\text{NN}}}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT NN end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 2.76 TeVTeV\,\mathrm{TeV}roman_TeV. Eur. Phys. J. C 2017, 77, 252. https://doi.org/10.1140/epjc/s10052-017-4781-1.
  129. Abelev, B.B.; et al. (ALICE Collaboration) Azimuthal anisotropy of D meson production in Pb-Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV. Phys. Rev. C 2014, 90, 034904. https://doi.org/10.1103/PhysRevC.90.034904.
  130. Sirunyan, A.M.; et al. (CMS Collaboration) Measurement of prompt D0superscript𝐷0D^{0}italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT meson azimuthal anisotropy in Pb-Pb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{{s}_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Rev. Lett. 2018, 120, 202301. https://doi.org/10.1103/PhysRevLett.120.202301.
  131. Adare, A.; et al. (PHENIX Collaboration) Azimuthal correlations of electrons from heavy-flavor decay with hadrons in p+⁢psuperscript𝑝𝑝p^{+}pitalic_p start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_p and Au+Au collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Rev. C 2011, 83, 044912. https://doi.org/10.1103/PhysRevC.83.044912.
  132. Adam, J.; et al. (STAR Collaboration) Measurement of D00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT-meson + hadron two-dimensional angular correlations in Au+Au collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Rev. C 2020, 102, 014905. https://doi.org/10.1103/PhysRevC.102.014905.
  133. A Multiple Interaction Model for the Event Structure in Hadron Collisions. Phys. Rev. D 1987, 36, 2019. https://doi.org/10.1103/PhysRevD.36.2019.
  134. A study of charm quark correlations in ultra-relativistic p𝑝pitalic_p + p𝑝pitalic_p collisions with PYTHIA. arXiv 2015, arXiv:1507.00614.
  135. Agakishiev, G.; et al. (STAR Collaboration) Anomalous centrality evolution of two-particle angular correlations from Au-Au collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 62 and 200 GeV. Phys. Rev. C 2012, 86, 064902. https://doi.org/10.1103/PhysRevC.86.064902.
  136. Adare, A.; et al. (PHENIX Collaboration) Dihadron azimuthal correlations in Au+++Au collisions at sN⁢N=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Rev. C 2008, 78, 014901. https://doi.org/10.1103/PhysRevC.78.014901.
  137. Sirunyan, A.M.; et al. (CMS Collaboration) Studies of charm quark diffusion inside jets using PbPb and pp collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Rev. Lett. 2020, 125, 102001. https://doi.org/10.1103/PhysRevLett.125.102001.
  138. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015, 191, 159–177. https://doi.org/10.1016/j.cpc.2015.01.024.
  139. Tumasyan, A.; et al. (CMS Collaboration) Search for medium effects using jets from bottom quarks in PbPb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Lett. B 2023, 844, 137849. https://doi.org/10.1016/j.physletb.2023.137849.
  140. On specific QCD properties of heavy quark fragmentation (‘dead cone’). J. Phys. G 1991, 17, 1602–1604. https://doi.org/10.1088/0954-3899/17/10/023.
  141. Heavy quark diffusion in strongly coupled N = 4 Yang-Mills. Phys. Rev. D 2006, 74, 085012. https://doi.org/10.1103/PhysRevD.74.085012.
  142. Heavy quark radiative energy loss in QCD matter. Nucl. Phys. A 2004, 733, 265–298. https://doi.org/10.1016/j.nuclphysa.2003.12.020.
  143. Zakharov, B.G. Radiative p⟂subscript𝑝perpendicular-top_{\perp}italic_p start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT-broadening of fast partons in an expanding quark–gluon plasma. Eur. Phys. J. C 2021, 81, 57. https://doi.org/10.1140/epjc/s10052-021-08847-w.
  144. Aad, G.; et al. (ATLAS Collaboration) Azimuthal angle correlations of muons produced via heavy-flavor decays in 5.02 TeV Pb+Pb and p⁢p𝑝𝑝ppitalic_p italic_p collisions with the ATLAS detector. arXiv 2023, arXiv:2308.16652.
  145. Adcox, K.; et al. (PHENIX Collaboration) Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 2005, 757, 184–283. https://doi.org/10.1016/j.nuclphysa.2005.03.086.
  146. Adams, J.; et al. (STAR Collaboration) Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102–183. https://doi.org/10.1016/j.nuclphysa.2005.03.085.
  147. Back, B.B.; et al. (PHOBOS Collaboration) The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28–101. https://doi.org/10.1016/j.nuclphysa.2005.03.084.
  148. Arsene, I.; et al. (BRAHMS Collaboration) Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1–27. https://doi.org/10.1016/j.nuclphysa.2005.02.130.
  149. Aamodt, K.; et al. (ALICE Collaboration) Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb-Pb Collisions at sN⁢N=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV. Phys. Lett. B 2011, 696, 30–39. https://doi.org/10.1016/j.physletb.2010.12.020.
  150. ALICE Collaboration. The ALICE experiment—A journey through QCD. arXiv 2022, arXiv:2211.04384.
  151. Collective phenomena in non-central nuclear collisions. Landolt-Bornstein 2010, 23, 293–333. https://doi.org/10.1007/978-3-642-01539-7_10.
  152. Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions. Phys. Rev. 2010, C82, 064903. https://doi.org/10.1103/PhysRevC.82.064903.
  153. Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions. Z. Phys. C 1996, 70, 665–672. https://doi.org/10.1007/s002880050141.
  154. Abelev, B.I.; et al. (STAR Collaboration) Long range rapidity correlations and jet production in high energy nuclear collisions. Phys. Rev. 2009, C80, 064912. https://doi.org/10.1103/PhysRevC.80.064912.
  155. Abelev, B.; et al. (ALICE Collaboration) Long-range angular correlations on the near and away side in p-Pb collisions at sN⁢N=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Lett. 2013, B719, 29–41. https://doi.org/10.1016/j.physletb.2013.01.012.
  156. Aaboud, M.; et al. (ATLAS Collaboration) Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=5.02𝑠5.02\sqrt{s}=5.02square-root start_ARG italic_s end_ARG = 5.02 and 13131313 TeV and p𝑝pitalic_p+Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector. Phys. Rev. 2017, C96, 024908. https://doi.org/10.1103/PhysRevC.96.024908.
  157. Chatrchyan, S.; et al. (CMS Collaboration) Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. 2013, B724, 213–240. https://doi.org/10.1016/j.physletb.2013.06.028.
  158. Abelev, B.B.; et al. (ALICE Collaboration) Long-range angular correlations of π𝜋\rm\piitalic_π, K and p in p-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Lett. 2013, B726, 164–177. https://doi.org/10.1016/j.physletb.2013.08.024.
  159. Khachatryan, V.; et al. (CMS Collaboration) Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies. Phys. Lett. 2015, B742, 200–224. https://doi.org/10.1016/j.physletb.2015.01.034.
  160. Khachatryan, V.; et al. (CMS Collaboration) Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. J. High Energy Phys. 2010, 09, 91. https://doi.org/10.1007/JHEP09(2010)091.
  161. Adare, A.; et al. (PHENIX Collaboration) Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central d𝑑ditalic_d+++Au Collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{{}_{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Rev. Lett. 2013, 111, 212301. https://doi.org/10.1103/PhysRevLett.111.212301.
  162. Adamczyk, L.; et al. (STAR Collaboration) Long-range pseudorapidity dihadron correlations in d𝑑ditalic_d+Au collisions at sNN=200subscript𝑠NN200\sqrt{s_{\rm NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV. Phys. Lett. 2015, B747, 265–271. https://doi.org/10.1016/j.physletb.2015.05.075.
  163. Loizides, C. Experimental overview on small collision systems at the LHC. Nucl. Phys. 2016, A956, 200–207. https://doi.org/10.1016/j.nuclphysa.2016.04.022.
  164. The ’Ridge’ in Proton-Proton Scattering at 7 TeV. Phys. Rev. Lett. 2011, 106, 122004. https://doi.org/10.1103/PhysRevLett.106.122004.
  165. Elliptic and Triangular Flow and their Correlation in Ultrarelativistic High Multiplicity Proton Proton Collisions at 14 TeV. Phys. Lett. 2012, B711, 301–306. https://doi.org/10.1016/j.physletb.2012.04.010.
  166. Comparison of the color glass condensate to dihadron correlations in proton-proton and proton-nucleus collisions. Phys. Rev. 2013, D87, 094034. https://doi.org/10.1103/PhysRevD.87.094034.
  167. Initial state geometry and the role of hydrodynamics in proton-proton, proton-nucleus and deuteron-nucleus collisions. Phys. Rev. 2013, C87, 064906. https://doi.org/10.1103/PhysRevC.87.064906.
  168. Are the angular correlations in p⁢A𝑝𝐴pAitalic_p italic_A collisions due to a Glasmion or Bose condensation? Nucl. Phys. 2014, A922, 140–149. https://doi.org/10.1016/j.nuclphysa.2013.12.001.
  169. Wong, C.Y. Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV. Phys. Rev. 2011, C84, 024901. https://doi.org/10.1103/PhysRevC.84.024901.
  170. The Angantyr model for Heavy-Ion Collisions in PYTHIA8. J. High Energy Phys. 2018, 10, 134. https://doi.org/10.1007/JHEP10(2018)134.
  171. Novel collective phenomena in high-energy proton–proton and proton–nucleus collisions. Int. J. Mod. Phys. E 2016, 25, 1630002. https://doi.org/10.1142/S0218301316300022.
  172. Elliptic Flow of Heavy Quarkonia in p⁢A𝑝𝐴pAitalic_p italic_A Collisions. Phys. Rev. Lett. 2019, 122, 172302. https://doi.org/10.1103/PhysRevLett.122.172302.
  173. Collectivity of heavy mesons in proton-nucleus collisions. Phys. Rev. D 2020, 102, 034010. https://doi.org/10.1103/PhysRevD.102.034010.
  174. Adam, J.; et al. (ALICE Collaboration) Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb–Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV. Phys. Lett. 2016, B753, 41–56. https://doi.org/10.1016/j.physletb.2015.11.059.
  175. Adam, J.; et al. (ALICE Collaboration) Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb-Pb collisions at sNN=2.76subscriptsNN2.76\sqrt{{\mathrm{s}}_{\mathrm{NN}}}=2.76square-root start_ARG roman_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV. J. High Energy Phys. 2016, 09, 28. https://doi.org/10.1007/JHEP09(2016)028.
  176. Acharya, S.; et al. (ALICE Collaboration) D-meson azimuthal anisotropy in mid-central Pb-Pb collisions at 𝐬NN=5.02subscript𝐬NN5.02\mathbf{\sqrt{s_{\rm NN}}=5.02}square-root start_ARG bold_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = bold_5.02 TeV. arXiv 2017, arXiv:1707.01005.
  177. Acharya, S.; et al. (ALICE Collaboration) J/ψ𝜓\psiitalic_ψ elliptic flow in Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. Phys. Rev. Lett. 2017, 119, 242301. https://doi.org/10.1103/PhysRevLett.119.242301.
  178. Measurements of azimuthal anisotropy of nonprompt D00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT mesons in PbPb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. arXiv 2022, arXiv:2212.01636.
  179. Acharya, S.; et al. (ALICE Collaboration) Measurement of Non-prompt D0superscriptD0\rm D^{0}roman_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT-meson Elliptic Flow in Pb-Pb Collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV. arXiv 2023, arXiv:2307.14084.
  180. Charm quarks are more hydrodynamic than light quarks in final-state elliptic flow. Phys. Rev. C 2019, 99, 044911. https://doi.org/10.1103/PhysRevC.99.044911.
  181. Acharya, S.; et al. (ALICE Collaboration) Search for collectivity with azimuthal J/ψ𝜓\psiitalic_ψ-hadron correlations in high multiplicity p-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 and 8.16 TeV. Phys. Lett. B 2018, 780, 7–20. https://doi.org/10.1016/j.physletb.2018.02.039.
  182. Sirunyan, A.M.; et al. (CMS Collaboration) Observation of prompt J/ψ𝜓\psiitalic_ψ meson elliptic flow in high-multiplicity pPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV. Phys. Lett. B 2019, 791, 172–194. https://doi.org/10.1016/j.physletb.2019.02.018.
  183. Acharya, S.; et al. (ALICE Collaboration) Measurements of azimuthal anisotropies at forward and backward rapidity with muons in high-multiplicity p–Pb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG =8.16 TeV. Phys. Lett. B 2023, 846, 137782. https://doi.org/10.1016/j.physletb.2023.137782.
  184. Aad, G.; et al. (ATLAS Collaboration) Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb+Pb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector. Phys. Lett. B 2020, 807, 135595. https://doi.org/10.1016/j.physletb.2020.135595.
  185. Influence of hadronic bound states above Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT on heavy-quark observables in Pb + Pb collisions at at the CERN Large Hadron Collider. Phys. Rev. C 2014, 89, 014905. https://doi.org/10.1103/PhysRevC.89.014905.
  186. Modified Boltzmann approach for modeling the splitting vertices induced by the hot QCD medium in the deep Landau-Pomeranchuk-Migdal region. Phys. Rev. C 2019, 100, 064911. https://doi.org/10.1103/PhysRevC.100.064911.
  187. Sensitivity study with a D and B mesons modular simulation code of heavy flavor RAA and azimuthal anisotropies based on beam energy, initial conditions, hadronization, and suppression mechanisms. Phys. Rev. C 2020, 102, 024906. https://doi.org/10.1103/PhysRevC.102.024906.
  188. A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 2005, 72, 064901. https://doi.org/10.1103/PhysRevC.72.064901.
  189. Further developments of a multi-phase transport model for relativistic nuclear collisions. Nucl. Sci. Tech. 2021, 32, 113. https://doi.org/10.1007/s41365-021-00944-5.
  190. Zhang, B. ZPC 1.0.1: A Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 1998, 109, 193–206. https://doi.org/10.1016/S0010-4655(98)00010-1.
  191. Anisotropic parton escape is the dominant source of azimuthal anisotropy in transport models. Phys. Lett. B 2016, 753, 506–510. https://doi.org/10.1016/j.physletb.2015.12.051.
  192. Sequential Regeneration of Charmonia in Heavy-Ion Collisions. Nucl. Phys. A 2015, 943, 147–158. https://doi.org/10.1016/j.nuclphysa.2015.09.006.
  193. Khachatryan, V.; et al. (CMS Collaboration) Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 2017, 765, 193–220. https://doi.org/10.1016/j.physletb.2016.12.009.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: