Papers
Topics
Authors
Recent
2000 character limit reached

Large Language Models for Simultaneous Named Entity Extraction and Spelling Correction

Published 1 Mar 2024 in cs.CL and cs.CV | (2403.00528v1)

Abstract: LLMs (LMs) such as BERT, have been shown to perform well on the task of identifying Named Entities (NE) in text. A BERT LM is typically used as a classifier to classify individual tokens in the input text, or to classify spans of tokens, as belonging to one of a set of possible NE categories. In this paper, we hypothesise that decoder-only LLMs can also be used generatively to extract both the NE, as well as potentially recover the correct surface form of the NE, where any spelling errors that were present in the input text get automatically corrected. We fine-tune two BERT LMs as baselines, as well as eight open-source LLMs, on the task of producing NEs from text that was obtained by applying Optical Character Recognition (OCR) to images of Japanese shop receipts; in this work, we do not attempt to find or evaluate the location of NEs in the text. We show that the best fine-tuned LLM performs as well as, or slightly better than, the best fine-tuned BERT LM, although the differences are not significant. However, the best LLM is also shown to correct OCR errors in some cases, as initially hypothesised.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.