2000 character limit reached
A test of strangeness quantum number conservation in proton-proton collisions (2403.00511v3)
Published 1 Mar 2024 in hep-ph
Abstract: The study delves into the production of (multi-)strange hadrons in proton-proton collisions at LHC. Novel observables are proposed to distinguish between EPOS4, based on core-corona separation between a thermalised QGP phase and a vacuum phase with global strangeness conservation, and PYTHIA8.3, based on microscopic interactions between Lund strings that conserve strangeness locally. Correlations between a $\phi$ meson and (multi-)strange hadrons are shown to be an excellent discriminator between the two types of models.
- N. Cabibbo and G. Parisi, “Exponential Hadronic Spectrum and Quark Liberation,” Phys. Lett. B 59 (1975) 67–69.
- E. V. Shuryak, “Theory of Hadronic Plasma,” Sov. Phys. JETP 47 (1978) 212–219.
- HotQCD Collaboration, A. Bazavov et. al., “Equation of state in ( 2+1 )-flavor QCD,” Phys. Rev. D 90 (2014) 094503, 1407.6387.
- CMS Collaboration, V. Khachatryan et. al., “Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC,” JHEP 09 (2010) 091, 1009.4122.
- ALICE Collaboration, B. Abelev et. al., “Long-range angular correlations on the near and away side in p𝑝pitalic_p-Pb collisions at sNN=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV,” Phys. Lett. B 719 (2013) 29–41, 1212.2001.
- ATLAS Collaboration, G. Aad et. al., “Observation of Long-Range Elliptic Azimuthal Anisotropies in s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 and 2.76 TeV pp𝑝𝑝ppitalic_p italic_p Collisions with the ATLAS Detector,” Phys. Rev. Lett. 116 (2016), no. 17 172301, 1509.04776.
- ATLAS Collaboration, G. Aad et. al., “Measurement of long-range pseudorapidity correlations and azimuthal harmonics in sNN=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV proton-lead collisions with the ATLAS detector,” Phys. Rev. C 90 (2014), no. 4 044906, 1409.1792.
- ALICE Collaboration, J. Adam et. al., “Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions,” Nature Phys. 13 (2017) 535–539, 1606.07424.
- ALICE Collaboration, K. Aamodt et. al., “Strange particle production in proton-proton collisions at sqrt(s) = 0.9 TeV with ALICE at the LHC,” Eur. Phys. J. C 71 (2011) 1594, 1012.3257.
- LHCb Collaboration, R. Aaij et. al., “Prompt Ks0subscriptsuperscript𝐾0𝑠K^{0}_{s}italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT production in pp𝑝𝑝ppitalic_p italic_p collisions at s=0.9TeV𝑠0.9TeV\sqrt{s}=0.9~{}\rm{TeV}square-root start_ARG italic_s end_ARG = 0.9 roman_TeV,” Phys. Lett. B 693 (2010) 69–80, 1008.3105.
- CMS Collaboration, V. Khachatryan et. al., “Strange Particle Production in pp𝑝𝑝ppitalic_p italic_p Collisions at s=0.9𝑠0.9\sqrt{s}=0.9square-root start_ARG italic_s end_ARG = 0.9 and 7 TeV,” JHEP 05 (2011) 064, 1102.4282.
- ALEPH Collaboration, R. Barate et. al., “Studies of quantum chromodynamics with the ALEPH detector,” Phys. Rept. 294 (1998) 1–165.
- SLD Collaboration, K. Abe et. al., “Production of π+superscript𝜋\pi^{+}italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, π−superscript𝜋\pi^{-}italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, K+superscript𝐾K^{+}italic_K start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, K−superscript𝐾K^{-}italic_K start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, p and p¯¯p\bar{\rm p}over¯ start_ARG roman_p end_ARG in Light (uds𝑢𝑑𝑠udsitalic_u italic_d italic_s), c𝑐citalic_c and b𝑏bitalic_b Jets from Z0superscript𝑍0Z^{0}italic_Z start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Decays,” Phys. Rev. D 69 (2004) 072003, hep-ex/0310017.
- C. Bierlich and J. R. Christiansen, “Effects of color reconnection on hadron flavor observables,” Phys. Rev. D 92 (2015), no. 9 094010, 1507.02091.
- K. Werner, “Core-corona separation in ultra-relativistic heavy ion collisions,” Phys. Rev. Lett. 98 (2007) 152301, 0704.1270.
- T. Sjostrand and B. Soderberg, “A MONTE CARLO PROGRAM FOR QUARK JET GENERATION,”.
- B. Andersson and G. Gustafson, “Semiclassical Models for Gluon Jets and Leptoproduction Based on the Massless Relativistic String,” Z. Phys. C 3 (1980) 223.
- B. Andersson, G. Gustafson, and B. Soderberg, “A General Model for Jet Fragmentation,” Z. Phys. C 20 (1983) 317.
- B. R. Webber, “A QCD Model for Jet Fragmentation Including Soft Gluon Interference,” Nucl. Phys. B 238 (1984) 492–528.
- K. Werner, “Revealing a deep connection between factorization and saturation: New insight into modeling high-energy proton-proton and nucleus-nucleus scattering in the EPOS4 framework,” Phys. Rev. C 108 (2023), no. 6 064903, 2301.12517.
- C. Bierlich et. al., “A comprehensive guide to the physics and usage of PYTHIA 8.3,” SciPost Phys. Codeb. 2022 (2022) 8, 2203.11601.
- C. Bierlich, G. Gustafson, L. Lönnblad, and A. Tarasov, “Effects of Overlapping Strings in pp Collisions,” JHEP 03 (2015) 148, 1412.6259.
- ALICE Collaboration, S. Acharya et. al., “Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” Eur. Phys. J. C 80 (2020), no. 2 167, 1908.01861.
- C. Bierlich, G. Gustafson, and L. Lönnblad, “A shoving model for collectivity in hadronic collisions,” 1612.05132.
- C. Bierlich, G. Gustafson, and L. Lönnblad, “Collectivity without plasma in hadronic collisions,” Phys. Lett. B 779 (2018) 58–63, 1710.09725.
- C. Bierlich, “String Interactions as a Source of Collective Behaviour,” Universe 10 (2024), no. 1 46, 2401.07585.
- T. Sjostrand and P. Z. Skands, “Baryon number violation and string topologies,” Nucl. Phys. B 659 (2003) 243, hep-ph/0212264.
- J. R. Christiansen and P. Z. Skands, “String Formation Beyond Leading Colour,” JHEP 08 (2015) 003, 1505.01681.
- K. Werner and J. Aichelin, “Microcanonical treatment of hadronizing the quark - gluon plasma,” Phys. Rev. C 52 (1995) 1584–1603, nucl-th/9503021.
- F. M. Liu, K. Werner, and J. Aichelin, “Comparison of microcanonical and canonical hadronization,” Phys. Rev. C 68 (2003) 024905, hep-ph/0304174.
- S. A. Bass, P. Danielewicz, and S. Pratt, “Clocking hadronization in relativistic heavy ion collisions with balance functions,” Phys. Rev. Lett. 85 (2000) 2689–2692, nucl-th/0005044.
- S. Pratt, “General Charge Balance Functions, A Tool for Studying the Chemical Evolution of the Quark-Gluon Plasma,” Phys. Rev. C 85 (2012) 014904, 1109.3647.
- ALICE Collaboration, S. Acharya et. al., “Studying strangeness and baryon production mechanisms through angular correlations between charged ΞΞ\Xiroman_Ξ baryons and identified hadrons in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” 2308.16706.
- B. Andersson, G. Gustafson, and T. Sjostrand, “A Model for Baryon Production in Quark and Gluon Jets,” Nucl. Phys. B 197 (1982) 45–54.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.