Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 235 tok/s Pro
2000 character limit reached

Spatial Coherence Loss: All Objects Matter in Salient and Camouflaged Object Detection (2402.18698v2)

Published 28 Feb 2024 in cs.CV

Abstract: Generic object detection is a category-independent task that relies on accurate modeling of objectness. We show that for accurate semantic analysis, the network needs to learn all object-level predictions that appear at any stage of learning, including the pre-defined ground truth (GT) objects and the ambiguous decoy objects that the network misidentifies as foreground. Yet, most relevant models focused mainly on improving the learning of the GT objects. A few methods that consider decoy objects utilize loss functions that only focus on the single-response, i.e., the loss response of a single ambiguous pixel, and thus do not benefit from the wealth of information that an object-level ambiguity learning design can provide. Inspired by the human visual system, which first discerns the boundaries of ambiguous regions before delving into the semantic meaning, we propose a novel loss function, Spatial Coherence Loss (SCLoss), that incorporates the mutual response between adjacent pixels into the widely-used single-response loss functions. We demonstrate that the proposed SCLoss can gradually learn the ambiguous regions by detecting and emphasizing their boundaries in a self-adaptive manner. Through comprehensive experiments, we demonstrate that replacing popular loss functions with SCLoss can improve the performance of current state-of-the-art (SOTA) salient or camouflaged object detection (SOD or COD) models. We also demonstrate that combining SCLoss with other loss functions can further improve performance and result in SOTA outcomes for different applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.