Quantum gravity with dynamical wave-function collapse via a classical scalar field (2402.17024v1)
Abstract: In hybrid classical-quantum theories, the dynamics of the classical system induce the classicality of the quantum system, meaning that such models do not necessarily require a measurement postulate to describe probabilistic measurement outcomes. It has recently been shown that covariant classical-quantum dynamics can be constructed using path integral methods, with the dynamics encoded in a combined action for the classical and quantum variables. This work introduces a classical-quantum model whereby quantum gravity interacts with a classical scalar field. The scalar field can be viewed as fundamentally classical or effectively classical due to the decoherence of a quantum gravity theory. The dynamics act to collapse quantum spacetimes according to their Ricci scalar, with corresponding diffusion in the scalar field due to the quantum back-reaction. In the classical limit, the diffusion in the scalar field manifests itself via stochastic fluctuations in the Newtonian potential. Because we couple a classical scalar field to perturbative quantum gravity, we find the theory is not renormalizable but is instead to be viewed as an effective field theory. However, it is an effective field theory that does not necessarily require a measurement postulate. More generally, our work shows it is possible to integrate collapse dynamics with high-energy physics and covariance.
- E. Adlam, Foundations of Physics 53 (2023), 10.1007/s10701-023-00686-x.
- D. Wallace, “Decoherence and ontology, or: How i learned to stop worrying and love fapp,” (2011), arXiv:1111.2189 [physics.hist-ph] .
- D. Frauchiger and R. Renner, Nature Communications 9 (2018), 10.1038/s41467-018-05739-8.
- L. Vaidman, in The Stanford Encyclopedia of Philosophy, edited by E. N. Zalta (Metaphysics Research Lab, Stanford University, 2021) Fall 2021 ed.
- D. Wallace, “A formal proof of the born rule from decision-theoretic assumptions,” (2009), arXiv:0906.2718 [quant-ph] .
- S. M. Carroll and A. Singh, “Mad-dog everettianism: Quantum mechanics at its most minimal,” (2018), arXiv:1801.08132 [quant-ph] .
- C. Rovelli, International Journal of Theoretical Physics 35, 1637–1678 (1996).
- W. H. Zurek, Reviews of Modern Physics 75, 715–775 (2003).
- P. M. Pearle, Phys. Rev. A 39, 2277 (1989).
- A. Bassi and G. Ghirardi, Physics Reports 379, 257–426 (2003).
- N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).
- P. Pearle, Physical Review D 91 (2015), 10.1103/physrevd.91.105012.
- R. Tumulka, Journal of Statistical Physics 125, 821–840 (2006).
- D. Wallace, “The sky is blue, and other reasons quantum mechanics is not underdetermined by evidence,” (2022), arXiv:2205.00568 [quant-ph] .
- L. Diósi, Physical Review D 106 (2022), 10.1103/physrevd.106.l051901.
- M. Srednicki, Nuclear Physics B 410, 143–154 (1993).
- W. G. Unruh and R. M. Wald, Reports on Progress in Physics 80, 092002 (2017).
- S. W. Hawking, Phys. Rev. D 14, 2460 (1976).
- J. Oppenheim and Z. Weller-Davies, (2023a), arXiv:2302.07283 [gr-qc] .
- R. Feynman and F. Vernon, Annals of Physics 281, 547 (2000).
- M. F. Weber and E. Frey, Reports on Progress in Physics 80, 046601 (2017).
- J. Oppenheim and Z. Weller-Davies, (2023b), arXiv:2301.04677 [quant-ph] .
- J. Oppenheim, Phys. Rev. X 13, 041040 (2023), originally arXiv:1811.03116 (2018).
- P. Blanchard and A. Jadczyk, Physics Letters A 183, 272 (1993).
- D. Poulin and J. Preskill, (2017), Frontiers of Quantum Information Physics, KITP.
- P. Blanchard and A. Jadczyk, Annalen der Physik 507, 583 (1995), https://arxiv.org/abs/hep-th/9409189.
- L. Diosi, “Quantum dynamics with two planck constants and the semiclassical limit,” (1995), arXiv:quant-ph/9503023 [quant-ph] .
- K. Jacobs and D. A. Steck, Contemporary Physics 47, 279–303 (2006).
- H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).
- L. Diósi, Physica Scripta T163, 014004 (2014a).
- A. Tilloy and L. Diósi, Physical Review D 93 (2016), 10.1103/physrevd.93.024026.
- J. Oppenheim and Z. Weller-Davies, JHEP 02, 080 (2022), arXiv:2011.15112 [hep-th] .
- C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
- M. J. G. Veltman, Conf. Proc. C 7507281, 265 (1975).
- G. ’t Hooft and M. J. G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974).
- J. F. Donoghue, Physical Review D 50, 3874–3888 (1994).
- C. P. Burgess, Living Rev. Rel. 7, 5 (2004), arXiv:gr-qc/0311082 .
- H. Georgi, Annual Rev. of Nuclear and Particle Science 43, 209 (1993).
- G. W. Horndeski, International Journal of Theoretical Physics 10, 363–384 (1974).
- T. Kobayashi, Reports on Progress in Physics 82, 086901 (2019).
- R. Penrose, Gen. Rel. Grav. 28, 581 (1996).
- L. Diósi, Physics Letters A 120, 377–381 (1987).
- R. Alicki and S. Kryszewski, Physical Review A 68, 013809 (2003).
- L. Diosi, J. Phys. Conf. Ser. 306, 012006 (2011), arXiv:1101.0672 [quant-ph] .
- L. Diósi, Physical Review A 107 (2023), 10.1103/physreva.107.062206.
- L. Diósi, Physica Scripta T163, 014004 (2014b).
- L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).
- H. Dekker, Phys. Rev. A 19, 2102 (1979).
- S. W. Hawking and T. Hertog, Physical Review D 65 (2002), 10.1103/physrevd.65.103515.
- J. S. Bell, Physics Physique Fizika 1, 195 (1964).
- J. F. Donoghue, AIP Conf. Proc. 1483, 73 (2012), arXiv:1209.3511 [gr-qc] .
- G. Kofinas and M. Tsoukalas, Eur. Phys. J. C 76, 686 (2016), arXiv:1512.04786 [gr-qc] .
- P. G. Bergmann, International Journal of Theoretical Physics 1, 25–36 (1968).
- R. V. Wagoner, Physical Review D 1, 3209–3216 (1970).
- N. Roy and N. Banerjee, Physical Review D 95 (2017), 10.1103/physrevd.95.064048.
- C. M. Will, Living Reviews in Relativity 17 (2014), 10.12942/lrr-2014-4.
- A. Salvio, Frontiers in Physics 6 (2018a), 10.3389/fphy.2018.00077.
- G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, “Replica wormholes and the black hole interior,” (2020), arXiv:1911.11977 [hep-th] .
- D. Stanford, “More quantum noise from wormholes,” (2020), arXiv:2008.08570 [hep-th] .
- A. Barros and C. Romero, Physics Letters A 245, 31–34 (1998).
- T. Quinn, Nature 408, 919 (2000).
- G. Gillies and C. Unnikrishnan, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, 20140022 (2014).
- C. Rothleitner and S. Schlamminger, Review of Scientific Instruments 88, 111101 (2017).
- J. F. Donoghue and G. Menezes, Physical Review D 100 (2019a), 10.1103/physrevd.100.105006.
- A. Salvio, Frontiers in Physics 6 (2018b), 10.3389/fphy.2018.00077.
- K. S. Stelle, Phys. Rev. D 16, 953 (1977).
- J. F. Donoghue and G. Menezes, Physical Review D 100 (2019b), 10.1103/physrevd.100.105006.
- C. F. Steinwachs, Frontiers in Physics 8 (2020), 10.3389/fphy.2020.00185.
- M. S. Ruf and C. F. Steinwachs, Phys. Rev. D 97, 044049 (2018), arXiv:1711.04785 [gr-qc] .
- C. Anastopoulos, International Journal of Theoretical Physics 58, 890–930 (2018).
- D. Wallace, “Quantum gravity at low energies,” (2021), arXiv:2112.12235 [gr-qc] .
- I. Layton and J. Oppenheim, (2023), arXiv:2310.18271 [quant-ph] .
- J. J. Halliwell, Phys. Rev. D 39, 2912 (1989).
- H. F. Dowker and J. J. Halliwell, Phys. Rev. D 46, 1580 (1992).
- D. Skinner, “Advanced quantum field theory,” https://www.damtp.cam.ac.uk/user/dbs26/AQFT.html (2023), lecture notes for Part III course at the University of Cambridge.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.