Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Premerger detection of massive black hole binaries using deep learning (2402.16282v2)

Published 26 Feb 2024 in astro-ph.IM and gr-qc

Abstract: Coalescing massive black hole binaries (MBHBs) are one of primary sources for space-based gravitational wave (GW) observations. The mergers of these binaries are expected to give rise to detectable electromagnetic (EM) emissions with a narrow time window. The premerger detection of GW signals is vital for follow-up EM observations. The conventional approach for searching GW signals involves high computational costs. In this study, we present a deep learning model to search for GW signals from MBHBs. Our model is able to process 4.7 days of simulated data within 0.01 seconds and detect GW signals several hours to days before the final merger. The model provides the possibility of the coincident GW and EM detection of MBHBs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
  2. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 11, 021053 (2021), arXiv:2010.14527 [gr-qc] .
  3. R. Abbott et al. (LIGO Scientific, VIRGO), Phys. Rev. D 109, 022001 (2024), arXiv:2108.01045 [gr-qc] .
  4. Z. Arzoumanian et al. (NANOGrav), Astrophys. J. Lett. 905, L34 (2020), arXiv:2009.04496 [astro-ph.HE] .
  5. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE] .
  6. D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
  7. W.-R. Hu and Y.-L. Wu, The taiji program in space for gravitational wave physics and the nature of gravity (2017).
  8. J. Kormendy and D. Richstone, Ann. Rev. Astron. Astrophys. 33, 581 (1995).
  9. J. Magorrian et al., Astron. J. 115, 2285 (1998), arXiv:astro-ph/9708072 .
  10. M. C. Begelman, R. D. Blandford, and M. J. Rees, Nature 287, 307 (1980).
  11. F. D. Ryan, Phys. Rev. D 56, 1845 (1997).
  12. N. A. Collins and S. A. Hughes, Phys. Rev. D 69, 124022 (2004), arXiv:gr-qc/0402063 .
  13. E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73, 064030 (2006), arXiv:gr-qc/0512160 .
  14. N. J. Cornish and E. K. Porter, Class. Quant. Grav. 24, 5729 (2007a), arXiv:gr-qc/0612091 .
  15. D. E. Holz and S. A. Hughes, Astrophys. J. 629, 15 (2005), arXiv:astro-ph/0504616 .
  16. H.-Y. Chen, M. Fishbach, and D. E. Holz, Nature 562, 545 (2018), arXiv:1712.06531 [astro-ph.CO] .
  17. T. Bogdanovic, M. C. Miller, and L. Blecha, Living Rev. Rel. 25, 3 (2022), arXiv:2109.03262 [astro-ph.HE] .
  18. C. Palenzuela, L. Lehner, and S. L. Liebling, Science 329, 927 (2010), arXiv:1005.1067 [astro-ph.HE] .
  19. B. J. Owen and B. S. Sathyaprakash, Phys. Rev. D 60, 022002 (1999), arXiv:gr-qc/9808076 .
  20. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 93, 122003 (2016a), arXiv:1602.03839 [gr-qc] .
  21. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 241103 (2016b), arXiv:1606.04855 [gr-qc] .
  22. C. W. Helstrom, Statistical theory of signal detection: international series of monographs in electronics and instrumentation, Vol. 9 (Elsevier, 2013).
  23. S. Roy, A. S. Sengupta, and P. Ajith, Phys. Rev. D 99, 024048 (2019), arXiv:1711.08743 [gr-qc] .
  24. N. J. Cornish and E. K. Porter, Phys. Rev. D 75, 021301 (2007b), arXiv:gr-qc/0605135 .
  25. D. George and E. A. Huerta, Phys. Rev. D 97, 044039 (2018a), arXiv:1701.00008 [astro-ph.IM] .
  26. D. George and E. A. Huerta, Phys. Lett. B 778, 64 (2018b), arXiv:1711.03121 [gr-qc] .
  27. P. G. Krastev, Phys. Lett. B 803, 135330 (2020), arXiv:1908.03151 [astro-ph.IM] .
  28. M. B. Schäfer, F. Ohme, and A. H. Nitz, Phys. Rev. D 102, 063015 (2020), arXiv:2006.01509 [astro-ph.HE] .
  29. G. Nelemans, L. R. Yungelson, and S. F. Portegies Zwart, Astron. Astrophys. 375, 890 (2001), arXiv:astro-ph/0105221 .
  30. N. J. Cornish, Phys. Rev. D 105, 044007 (2022), arXiv:2110.06238 [gr-qc] .
  31. M. L. Katz, Phys. Rev. D 105, 044055 (2022), arXiv:2111.01064 [gr-qc] .
  32. J. W. Cooley and J. W. Tukey, Math. Comput. 19, 297 (1965).
  33. D. Hendrycks and K. Gimpel,   (2016), arXiv:1606.08415 [cs.LG] .
  34. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature 323, 533 (1986).
  35. C. Bishop, Springer google schola 2, 5 (2006).
  36. D. P. Kingma and J. Ba,   (2014), arXiv:1412.6980 [cs.LG] .
  37. M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 65, 082003 (2002).
  38. LISA Consortium’s LDC working group, LISA Data Challenges, https://lisa-ldc.lal.in2p3.fr (2019).
  39. S. Babak and A. Petiteau, LISA Data Challenge Manual, https://lisa-ldc.lal.in2p3.fr/static/data/pdf/LDC-manual-002.pdf (2018).
  40. I. Loshchilov and F. Hutter (2016) arXiv:1608.03983 [cs.LG] .
  41. T. Fawcett, Pattern Recognition Letters 27, 861 (2006), rOC Analysis in Pattern Recognition.
  42. A. P. Bradley, Pattern Recognition 30, 1145 (1997).
  43. J. A. Hanley and B. J. McNeil, Radiology 143, 29 (1982), pMID: 7063747, https://doi.org/10.1148/radiology.143.1.7063747 .
  44. S. F. Portegies Zwart and S. L. W. McMillan, Astrophys. J. 576, 899 (2002), arXiv:astro-ph/0201055 .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube