Premerger detection of massive black hole binaries using deep learning (2402.16282v2)
Abstract: Coalescing massive black hole binaries (MBHBs) are one of primary sources for space-based gravitational wave (GW) observations. The mergers of these binaries are expected to give rise to detectable electromagnetic (EM) emissions with a narrow time window. The premerger detection of GW signals is vital for follow-up EM observations. The conventional approach for searching GW signals involves high computational costs. In this study, we present a deep learning model to search for GW signals from MBHBs. Our model is able to process 4.7 days of simulated data within 0.01 seconds and detect GW signals several hours to days before the final merger. The model provides the possibility of the coincident GW and EM detection of MBHBs.
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 11, 021053 (2021), arXiv:2010.14527 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, VIRGO), Phys. Rev. D 109, 022001 (2024), arXiv:2108.01045 [gr-qc] .
- Z. Arzoumanian et al. (NANOGrav), Astrophys. J. Lett. 905, L34 (2020), arXiv:2009.04496 [astro-ph.HE] .
- G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE] .
- D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
- W.-R. Hu and Y.-L. Wu, The taiji program in space for gravitational wave physics and the nature of gravity (2017).
- J. Kormendy and D. Richstone, Ann. Rev. Astron. Astrophys. 33, 581 (1995).
- J. Magorrian et al., Astron. J. 115, 2285 (1998), arXiv:astro-ph/9708072 .
- M. C. Begelman, R. D. Blandford, and M. J. Rees, Nature 287, 307 (1980).
- F. D. Ryan, Phys. Rev. D 56, 1845 (1997).
- N. A. Collins and S. A. Hughes, Phys. Rev. D 69, 124022 (2004), arXiv:gr-qc/0402063 .
- E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73, 064030 (2006), arXiv:gr-qc/0512160 .
- N. J. Cornish and E. K. Porter, Class. Quant. Grav. 24, 5729 (2007a), arXiv:gr-qc/0612091 .
- D. E. Holz and S. A. Hughes, Astrophys. J. 629, 15 (2005), arXiv:astro-ph/0504616 .
- H.-Y. Chen, M. Fishbach, and D. E. Holz, Nature 562, 545 (2018), arXiv:1712.06531 [astro-ph.CO] .
- T. Bogdanovic, M. C. Miller, and L. Blecha, Living Rev. Rel. 25, 3 (2022), arXiv:2109.03262 [astro-ph.HE] .
- C. Palenzuela, L. Lehner, and S. L. Liebling, Science 329, 927 (2010), arXiv:1005.1067 [astro-ph.HE] .
- B. J. Owen and B. S. Sathyaprakash, Phys. Rev. D 60, 022002 (1999), arXiv:gr-qc/9808076 .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 93, 122003 (2016a), arXiv:1602.03839 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 241103 (2016b), arXiv:1606.04855 [gr-qc] .
- C. W. Helstrom, Statistical theory of signal detection: international series of monographs in electronics and instrumentation, Vol. 9 (Elsevier, 2013).
- S. Roy, A. S. Sengupta, and P. Ajith, Phys. Rev. D 99, 024048 (2019), arXiv:1711.08743 [gr-qc] .
- N. J. Cornish and E. K. Porter, Phys. Rev. D 75, 021301 (2007b), arXiv:gr-qc/0605135 .
- D. George and E. A. Huerta, Phys. Rev. D 97, 044039 (2018a), arXiv:1701.00008 [astro-ph.IM] .
- D. George and E. A. Huerta, Phys. Lett. B 778, 64 (2018b), arXiv:1711.03121 [gr-qc] .
- P. G. Krastev, Phys. Lett. B 803, 135330 (2020), arXiv:1908.03151 [astro-ph.IM] .
- M. B. Schäfer, F. Ohme, and A. H. Nitz, Phys. Rev. D 102, 063015 (2020), arXiv:2006.01509 [astro-ph.HE] .
- G. Nelemans, L. R. Yungelson, and S. F. Portegies Zwart, Astron. Astrophys. 375, 890 (2001), arXiv:astro-ph/0105221 .
- N. J. Cornish, Phys. Rev. D 105, 044007 (2022), arXiv:2110.06238 [gr-qc] .
- M. L. Katz, Phys. Rev. D 105, 044055 (2022), arXiv:2111.01064 [gr-qc] .
- J. W. Cooley and J. W. Tukey, Math. Comput. 19, 297 (1965).
- D. Hendrycks and K. Gimpel, (2016), arXiv:1606.08415 [cs.LG] .
- D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature 323, 533 (1986).
- C. Bishop, Springer google schola 2, 5 (2006).
- D. P. Kingma and J. Ba, (2014), arXiv:1412.6980 [cs.LG] .
- M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 65, 082003 (2002).
- LISA Consortium’s LDC working group, LISA Data Challenges, https://lisa-ldc.lal.in2p3.fr (2019).
- S. Babak and A. Petiteau, LISA Data Challenge Manual, https://lisa-ldc.lal.in2p3.fr/static/data/pdf/LDC-manual-002.pdf (2018).
- I. Loshchilov and F. Hutter (2016) arXiv:1608.03983 [cs.LG] .
- T. Fawcett, Pattern Recognition Letters 27, 861 (2006), rOC Analysis in Pattern Recognition.
- A. P. Bradley, Pattern Recognition 30, 1145 (1997).
- J. A. Hanley and B. J. McNeil, Radiology 143, 29 (1982), pMID: 7063747, https://doi.org/10.1148/radiology.143.1.7063747 .
- S. F. Portegies Zwart and S. L. W. McMillan, Astrophys. J. 576, 899 (2002), arXiv:astro-ph/0201055 .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.