Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bounded fractional intersecting families are linear in size (2402.14981v2)

Published 22 Feb 2024 in math.CO

Abstract: Using the sunflower method, we show that if $\theta \in (0,1) \cap \mathbb{Q}$ and $\mathcal{F}$ is a $O(n{1/3})$-bounded $\theta$-intersecting family over $[n]$, then $\lvert \mathcal{F} \rvert = O(n)$, and that if $\mathcal{F}$ is $o(n{1/3})$-bounded, then $\lvert \mathcal{F} \rvert \leq (\frac{3}{2} + o(1))n$. This partially solves a conjecture of Balachandran, Mathew and Mishra that any $\theta$-intersecting family over $[n]$ has size at most linear in $n$, in the regime where we have no very large sets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.