Comparing MCMC algorithms in Stochastic Volatility Models using Simulation Based Calibration (2402.12384v1)
Abstract: Simulation Based Calibration (SBC) is applied to analyse two commonly used, competing Markov chain Monte Carlo algorithms for estimating the posterior distribution of a stochastic volatility model. In particular, the bespoke 'off-set mixture approximation' algorithm proposed by Kim, Shephard, and Chib (1998) is explored together with a Hamiltonian Monte Carlo algorithm implemented through Stan. The SBC analysis involves a simulation study to assess whether each sampling algorithm has the capacity to produce valid inference for the correctly specified model, while also characterising statistical efficiency through the effective sample size. Results show that Stan's No-U-Turn sampler, an implementation of Hamiltonian Monte Carlo, produces a well-calibrated posterior estimate while the celebrated off-set mixture approach is less efficient and poorly calibrated, though model parameterisation also plays a role. Limitations and restrictions of generality are discussed.
- \APACinsertmetastarRJ-2021-048{APACrefauthors}Bengtsson, H. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Unifying Framework for Parallel and Distributed Processing in R using Futures A unifying framework for parallel and distributed processing in r using futures.\BBCQ \APACjournalVolNumPagesThe R Journal132208–227. {APACrefURL} https://doi.org/10.32614/RJ-2021-048 {APACrefDOI} \doi10.32614/RJ-2021-048 \PrintBackRefs\CurrentBib
- \APACinsertmetastarbetancourt2016identifying{APACrefauthors}Betancourt, M. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleIdentifying the optimal integration time in Hamiltonian Monte Carlo Identifying the optimal integration time in Hamiltonian Monte Carlo.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1601.00225. \PrintBackRefs\CurrentBib
- \APACinsertmetastarbetancourt2017conceptual{APACrefauthors}Betancourt, M. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleA conceptual introduction to Hamiltonian Monte Carlo A conceptual introduction to Hamiltonian Monte Carlo.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1701.02434. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \APACrefbtitleposterior: Tools for Working with Posterior Distributions. posterior: Tools for working with posterior distributions. {APACrefURL} https://mc-stan.org/posterior/ \APACrefnoteR package version 1.4.1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1994. \BBOQ\APACrefatitleOn Gibbs sampling for state space models On Gibbs sampling for state space models.\BBCQ \APACjournalVolNumPagesBiometrika813541–553. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1989. \BBOQ\APACrefatitlePricing European currency options: A comparison of the modified Black-Scholes model and a random variance model Pricing European currency options: A comparison of the modified Black-Scholes model and a random variance model.\BBCQ \APACjournalVolNumPagesJournal of Financial and Quantitative Analysis243267–284. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1995. \BBOQ\APACrefatitleThe simulation smoother for time series models The simulation smoother for time series models.\BBCQ \APACjournalVolNumPagesBiometrika82339-350. \APACrefnoteReprinted in “Readings in Unobserved Component Models,” A.C. Harvey and T. Proietti, 2005, 354-367, Oxford University Press. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1987. \BBOQ\APACrefatitleHybrid Monte Carlo Hybrid Monte Carlo.\BBCQ \APACjournalVolNumPagesPhysics Letters B1952216–222. \PrintBackRefs\CurrentBib
- \APACrefYear2012. \APACrefbtitleTime series analysis by state space methods Time series analysis by state space methods (\BVOL 38). \APACaddressPublisherOUP Oxford. \PrintBackRefs\CurrentBib
- \APACinsertmetastarfruhwirth1995bayesian{APACrefauthors}Frühwirth-Schnatter, S. \APACrefYearMonthDay1995. \BBOQ\APACrefatitleBayesian model discrimination and Bayes factors for linear Gaussian state space models Bayesian model discrimination and Bayes factors for linear Gaussian state space models.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society: Series B (Methodological)571237–246. \PrintBackRefs\CurrentBib
- \APACinsertmetastarfuller1996introduction{APACrefauthors}Fuller, W\BPBIA. \APACrefYear1996. \APACrefbtitleIntroduction to time series Introduction to time series (\PrintOrdinalsecond \BEd). \APACaddressPublisherJohn Wiley & Sons. \PrintBackRefs\CurrentBib
- \APACinsertmetastarchad2018{APACrefauthors}Fulton, C. \APACrefYearMonthDay2018. \APACrefbtitleStochastic volatility: Bayesian inference. Stochastic volatility: Bayesian inference. \APAChowpublishedhttps://github.com/ChadFulton/tsa-notebooks/blob/master/stochastic_volatility_mcmc.ipynb. \APACaddressPublisherGitHub. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \APACrefbtitlebayesplot: Plotting for Bayesian Models. bayesplot: Plotting for bayesian models. {APACrefURL} https://mc-stan.org/bayesplot/ \APACrefnoteR package version 1.10.0 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitlecmdstanr: R Interface to ’CmdStan’ cmdstanr: R interface to ’cmdstan’\BBCQ [\bibcomputersoftwaremanual]. \APACrefnotehttps://mc-stan.org/cmdstanr/, https://discourse.mc-stan.org \PrintBackRefs\CurrentBib
- \APACrefYear2013. \APACrefbtitleBayesian Data Analysis Bayesian Data Analysis (\PrintOrdinalthird \BEd). \APACaddressPublisherChapman & Hall. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1992. \BBOQ\APACrefatitleInference from iterative simulation using multiple sequences Inference from iterative simulation using multiple sequences.\BBCQ \APACjournalVolNumPagesStatistical Science74457–472. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleThe prior can often only be understood in the context of the likelihood The prior can often only be understood in the context of the likelihood.\BBCQ \APACjournalVolNumPagesEntropy1910555. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleBayesian workflow Bayesian workflow.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2011.01808. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1984. \BBOQ\APACrefatitleStochastic relaxation, Gibbs distributions, and the Bayesian restoration of images Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.\BBCQ \APACjournalVolNumPagesIEEE Transactions on pattern analysis and machine intelligence6721–741. \PrintBackRefs\CurrentBib
- \APACinsertmetastargeyer1992practical{APACrefauthors}Geyer, C\BPBIJ. \APACrefYearMonthDay1992. \BBOQ\APACrefatitlePractical Markov chain Monte Carlo Practical Markov chain Monte Carlo.\BBCQ \APACjournalVolNumPagesStatistical Science473–483. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020\APACmonth09. \BBOQ\APACrefatitleArray programming with NumPy Array programming with NumPy.\BBCQ \APACjournalVolNumPagesNature5857825357–362. {APACrefURL} https://doi.org/10.1038/s41586-020-2649-2 {APACrefDOI} \doi10.1038/s41586-020-2649-2 \PrintBackRefs\CurrentBib
- \APACinsertmetastarhastings1970monte{APACrefauthors}Hastings, W\BPBIK. \APACrefYearMonthDay1970. \BBOQ\APACrefatitleMonte Carlo sampling methods using Markov chains and their applications Monte Carlo sampling methods using Markov chains and their applications.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleThe No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.\BBCQ \APACjournalVolNumPagesJournal of Machine Learing Research1511593–1623. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1987. \BBOQ\APACrefatitleThe pricing of options on assets with stochastic volatilities The pricing of options on assets with stochastic volatilities.\BBCQ \APACjournalVolNumPagesThe Journal of Finance422281–300. \PrintBackRefs\CurrentBib
- \APACinsertmetastarkalman1960new{APACrefauthors}Kalman, R\BPBIE. \APACrefYearMonthDay1960. \BBOQ\APACrefatitleA new approach to linear filtering and prediction problems A new approach to linear filtering and prediction problems.\BBCQ \APACjournalVolNumPagesJournal of Basic Engineering8235–45. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1998. \BBOQ\APACrefatitleStochastic volatility: likelihood inference and comparison with ARCH models Stochastic volatility: likelihood inference and comparison with ARCH models.\BBCQ \APACjournalVolNumPagesThe Review of Economic Studies653361–393. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1996. \APACrefbtitleSsfPack 1.1: filtering, smoothing and simulation algorithms for state space models in Ox. Ssfpack 1.1: filtering, smoothing and simulation algorithms for state space models in Ox. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1953. \BBOQ\APACrefatitleEquation of state calculations by fast computing machines Equation of state calculations by fast computing machines.\BBCQ \APACjournalVolNumPagesThe journal of chemical physics2161087–1092. \PrintBackRefs\CurrentBib
- \APACinsertmetastarneal1995bayesian{APACrefauthors}Neal, R\BPBIM. \APACrefYear1995. \APACrefbtitleBayesian Learning for Neural Networks Bayesian Learning for Neural Networks \APACtypeAddressSchool\BUPhD. \APACaddressSchoolUniversity of Toronto. \PrintBackRefs\CurrentBib
- \APACinsertmetastarneal2003slice{APACrefauthors}Neal, R\BPBIM. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleSlice sampling Slice sampling.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics313705–767. \PrintBackRefs\CurrentBib
- \APACinsertmetastarneal2011mcmc{APACrefauthors}Neal, R\BPBIM. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleMCMC using Hamiltonian dynamics MCMC using Hamiltonian dynamics.\BBCQ \APACjournalVolNumPagesHandbook of Markov Chain Monte Carlo2112. \PrintBackRefs\CurrentBib
- \APACinsertmetastarjsonlite{APACrefauthors}Ooms, J. \APACrefYearMonthDay2014. \BBOQ\APACrefatitleThe jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R Objects The jsonlite package: A practical and consistent mapping between json data and r objects.\BBCQ \APACjournalVolNumPagesarXiv:1403.2805 [stat.CO]. {APACrefURL} https://arxiv.org/abs/1403.2805 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePyMC: A Modern and Comprehensive Probabilistic Programming Framework in Python PyMC: A modern and comprehensive probabilistic programming framework in Python.\BBCQ \APACjournalVolNumPagesPeer J Computer Science9e1516. {APACrefDOI} \doi10.7717/peerj-cs.1516 \PrintBackRefs\CurrentBib
- \APACinsertmetastarrlang{APACrefauthors}R Core Team. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleR: A Language and Environment for Statistical Computing R: A language and environment for statistical computing\BBCQ [\bibcomputersoftwaremanual]. \APACaddressPublisherVienna, Austria. {APACrefURL} https://www.R-project.org/ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitlearrow: Integration to ’Apache’ ’Arrow’ arrow: Integration to ’apache’ ’arrow’\BBCQ [\bibcomputersoftwaremanual]. \APACrefnotehttps://github.com/apache/arrow/, https://arrow.apache.org/docs/r/ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitlequantmod: Quantitative Financial Modelling Framework quantmod: Quantitative financial modelling framework\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=quantmod \APACrefnoteR package version 0.4.20 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleStatsmodels: Econometric and statistical modeling with python Statsmodels: Econometric and statistical modeling with python.\BBCQ \BIn \APACrefbtitle9th Python in Science Conference. 9th python in science conference. \PrintBackRefs\CurrentBib
- \APACinsertmetastarstan{APACrefauthors}Stan Development Team. \APACrefYearMonthDay2023. \APACrefbtitleStan Modeling Language Users Guide and Reference Manual. Stan Modeling Language Users Guide and Reference Manual. {APACrefURL} https://mc-stan.org/users/documentation/ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2008. \BBOQ\APACrefatitleParameterisation and efficient MCMC estimation of non-Gaussian state space models Parameterisation and efficient MCMC estimation of non-Gaussian state space models.\BBCQ \APACjournalVolNumPagesComputational Statistics & Data Analysis5262911–2930. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleValidating Bayesian inference algorithms with simulation-based calibration Validating Bayesian inference algorithms with simulation-based calibration.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1804.06788. \PrintBackRefs\CurrentBib
- \APACrefYear2009. \APACrefbtitlePython 3 Reference Manual Python 3 reference manual. \APACaddressPublisherScotts Valley, CACreateSpace. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleRank-normalization, folding, and localization: An improved R^^𝑅\widehat{R}over^ start_ARG italic_R end_ARG for assessing convergence of MCMC (with discussion) Rank-normalization, folding, and localization: An improved R^^𝑅\widehat{R}over^ start_ARG italic_R end_ARG for assessing convergence of MCMC (with discussion).\BBCQ \APACjournalVolNumPagesBayesian Analysis162667–718. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleSciPy 1.0: Fundamental Algorithms for Scientific Computing in Python SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.\BBCQ \APACjournalVolNumPagesNature Methods17261–272. {APACrefDOI} \doi10.1038/s41592-019-0686-2 \PrintBackRefs\CurrentBib
- \APACinsertmetastarmckinney-proc-scipy-2010{APACrefauthors}Wes McKinney. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleData Structures for Statistical Computing in Python Data Structures for Statistical Computing in Python.\BBCQ \BIn Stéfan van der Walt \BBA Jarrod Millman (\BEDS), \APACrefbtitleProceedings of the 9th Python in Science Conference Proceedings of the 9th Python in Science Conference (\BPG 56 - 61). {APACrefDOI} \doi10.25080/Majora-92bf1922-00a \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleWelcome to the tidyverse Welcome to the tidyverse.\BBCQ \APACjournalVolNumPagesJournal of Open Source Software4431686. {APACrefDOI} \doi10.21105/joss.01686 \PrintBackRefs\CurrentBib
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.