Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Comparing MCMC algorithms in Stochastic Volatility Models using Simulation Based Calibration (2402.12384v1)

Published 28 Jan 2024 in stat.AP and econ.EM

Abstract: Simulation Based Calibration (SBC) is applied to analyse two commonly used, competing Markov chain Monte Carlo algorithms for estimating the posterior distribution of a stochastic volatility model. In particular, the bespoke 'off-set mixture approximation' algorithm proposed by Kim, Shephard, and Chib (1998) is explored together with a Hamiltonian Monte Carlo algorithm implemented through Stan. The SBC analysis involves a simulation study to assess whether each sampling algorithm has the capacity to produce valid inference for the correctly specified model, while also characterising statistical efficiency through the effective sample size. Results show that Stan's No-U-Turn sampler, an implementation of Hamiltonian Monte Carlo, produces a well-calibrated posterior estimate while the celebrated off-set mixture approach is less efficient and poorly calibrated, though model parameterisation also plays a role. Limitations and restrictions of generality are discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. \APACinsertmetastarRJ-2021-048{APACrefauthors}Bengtsson, H.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Unifying Framework for Parallel and Distributed Processing in R using Futures A unifying framework for parallel and distributed processing in r using futures.\BBCQ \APACjournalVolNumPagesThe R Journal132208–227. {APACrefURL} https://doi.org/10.32614/RJ-2021-048 {APACrefDOI} \doi10.32614/RJ-2021-048 \PrintBackRefs\CurrentBib
  2. \APACinsertmetastarbetancourt2016identifying{APACrefauthors}Betancourt, M.  \APACrefYearMonthDay2016. \BBOQ\APACrefatitleIdentifying the optimal integration time in Hamiltonian Monte Carlo Identifying the optimal integration time in Hamiltonian Monte Carlo.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1601.00225. \PrintBackRefs\CurrentBib
  3. \APACinsertmetastarbetancourt2017conceptual{APACrefauthors}Betancourt, M.  \APACrefYearMonthDay2017. \BBOQ\APACrefatitleA conceptual introduction to Hamiltonian Monte Carlo A conceptual introduction to Hamiltonian Monte Carlo.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1701.02434. \PrintBackRefs\CurrentBib
  4. \APACrefYearMonthDay2023. \APACrefbtitleposterior: Tools for Working with Posterior Distributions. posterior: Tools for working with posterior distributions. {APACrefURL} https://mc-stan.org/posterior/ \APACrefnoteR package version 1.4.1 \PrintBackRefs\CurrentBib
  5. \APACrefYearMonthDay1994. \BBOQ\APACrefatitleOn Gibbs sampling for state space models On Gibbs sampling for state space models.\BBCQ \APACjournalVolNumPagesBiometrika813541–553. \PrintBackRefs\CurrentBib
  6. \APACrefYearMonthDay1989. \BBOQ\APACrefatitlePricing European currency options: A comparison of the modified Black-Scholes model and a random variance model Pricing European currency options: A comparison of the modified Black-Scholes model and a random variance model.\BBCQ \APACjournalVolNumPagesJournal of Financial and Quantitative Analysis243267–284. \PrintBackRefs\CurrentBib
  7. \APACrefYearMonthDay1995. \BBOQ\APACrefatitleThe simulation smoother for time series models The simulation smoother for time series models.\BBCQ \APACjournalVolNumPagesBiometrika82339-350. \APACrefnoteReprinted in “Readings in Unobserved Component Models,” A.C. Harvey and T. Proietti, 2005, 354-367, Oxford University Press. \PrintBackRefs\CurrentBib
  8. \APACrefYearMonthDay1987. \BBOQ\APACrefatitleHybrid Monte Carlo Hybrid Monte Carlo.\BBCQ \APACjournalVolNumPagesPhysics Letters B1952216–222. \PrintBackRefs\CurrentBib
  9. \APACrefYear2012. \APACrefbtitleTime series analysis by state space methods Time series analysis by state space methods (\BVOL 38). \APACaddressPublisherOUP Oxford. \PrintBackRefs\CurrentBib
  10. \APACinsertmetastarfruhwirth1995bayesian{APACrefauthors}Frühwirth-Schnatter, S.  \APACrefYearMonthDay1995. \BBOQ\APACrefatitleBayesian model discrimination and Bayes factors for linear Gaussian state space models Bayesian model discrimination and Bayes factors for linear Gaussian state space models.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society: Series B (Methodological)571237–246. \PrintBackRefs\CurrentBib
  11. \APACinsertmetastarfuller1996introduction{APACrefauthors}Fuller, W\BPBIA.  \APACrefYear1996. \APACrefbtitleIntroduction to time series Introduction to time series (\PrintOrdinalsecond \BEd). \APACaddressPublisherJohn Wiley & Sons. \PrintBackRefs\CurrentBib
  12. \APACinsertmetastarchad2018{APACrefauthors}Fulton, C.  \APACrefYearMonthDay2018. \APACrefbtitleStochastic volatility: Bayesian inference. Stochastic volatility: Bayesian inference. \APAChowpublishedhttps://github.com/ChadFulton/tsa-notebooks/blob/master/stochastic_volatility_mcmc.ipynb. \APACaddressPublisherGitHub. \PrintBackRefs\CurrentBib
  13. \APACrefYearMonthDay2022. \APACrefbtitlebayesplot: Plotting for Bayesian Models. bayesplot: Plotting for bayesian models. {APACrefURL} https://mc-stan.org/bayesplot/ \APACrefnoteR package version 1.10.0 \PrintBackRefs\CurrentBib
  14. \APACrefYearMonthDay2022. \BBOQ\APACrefatitlecmdstanr: R Interface to ’CmdStan’ cmdstanr: R interface to ’cmdstan’\BBCQ [\bibcomputersoftwaremanual]. \APACrefnotehttps://mc-stan.org/cmdstanr/, https://discourse.mc-stan.org \PrintBackRefs\CurrentBib
  15. \APACrefYear2013. \APACrefbtitleBayesian Data Analysis Bayesian Data Analysis (\PrintOrdinalthird \BEd). \APACaddressPublisherChapman & Hall. \PrintBackRefs\CurrentBib
  16. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleInference from iterative simulation using multiple sequences Inference from iterative simulation using multiple sequences.\BBCQ \APACjournalVolNumPagesStatistical Science74457–472. \PrintBackRefs\CurrentBib
  17. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleThe prior can often only be understood in the context of the likelihood The prior can often only be understood in the context of the likelihood.\BBCQ \APACjournalVolNumPagesEntropy1910555. \PrintBackRefs\CurrentBib
  18. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleBayesian workflow Bayesian workflow.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2011.01808. \PrintBackRefs\CurrentBib
  19. \APACrefYearMonthDay1984. \BBOQ\APACrefatitleStochastic relaxation, Gibbs distributions, and the Bayesian restoration of images Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.\BBCQ \APACjournalVolNumPagesIEEE Transactions on pattern analysis and machine intelligence6721–741. \PrintBackRefs\CurrentBib
  20. \APACinsertmetastargeyer1992practical{APACrefauthors}Geyer, C\BPBIJ.  \APACrefYearMonthDay1992. \BBOQ\APACrefatitlePractical Markov chain Monte Carlo Practical Markov chain Monte Carlo.\BBCQ \APACjournalVolNumPagesStatistical Science473–483. \PrintBackRefs\CurrentBib
  21. \APACrefYearMonthDay2020\APACmonth09. \BBOQ\APACrefatitleArray programming with NumPy Array programming with NumPy.\BBCQ \APACjournalVolNumPagesNature5857825357–362. {APACrefURL} https://doi.org/10.1038/s41586-020-2649-2 {APACrefDOI} \doi10.1038/s41586-020-2649-2 \PrintBackRefs\CurrentBib
  22. \APACinsertmetastarhastings1970monte{APACrefauthors}Hastings, W\BPBIK.  \APACrefYearMonthDay1970. \BBOQ\APACrefatitleMonte Carlo sampling methods using Markov chains and their applications Monte Carlo sampling methods using Markov chains and their applications.\BBCQ \PrintBackRefs\CurrentBib
  23. \APACrefYearMonthDay2014. \BBOQ\APACrefatitleThe No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.\BBCQ \APACjournalVolNumPagesJournal of Machine Learing Research1511593–1623. \PrintBackRefs\CurrentBib
  24. \APACrefYearMonthDay1987. \BBOQ\APACrefatitleThe pricing of options on assets with stochastic volatilities The pricing of options on assets with stochastic volatilities.\BBCQ \APACjournalVolNumPagesThe Journal of Finance422281–300. \PrintBackRefs\CurrentBib
  25. \APACinsertmetastarkalman1960new{APACrefauthors}Kalman, R\BPBIE.  \APACrefYearMonthDay1960. \BBOQ\APACrefatitleA new approach to linear filtering and prediction problems A new approach to linear filtering and prediction problems.\BBCQ \APACjournalVolNumPagesJournal of Basic Engineering8235–45. \PrintBackRefs\CurrentBib
  26. \APACrefYearMonthDay1998. \BBOQ\APACrefatitleStochastic volatility: likelihood inference and comparison with ARCH models Stochastic volatility: likelihood inference and comparison with ARCH models.\BBCQ \APACjournalVolNumPagesThe Review of Economic Studies653361–393. \PrintBackRefs\CurrentBib
  27. \APACrefYearMonthDay1996. \APACrefbtitleSsfPack 1.1: filtering, smoothing and simulation algorithms for state space models in Ox. Ssfpack 1.1: filtering, smoothing and simulation algorithms for state space models in Ox. \PrintBackRefs\CurrentBib
  28. \APACrefYearMonthDay1953. \BBOQ\APACrefatitleEquation of state calculations by fast computing machines Equation of state calculations by fast computing machines.\BBCQ \APACjournalVolNumPagesThe journal of chemical physics2161087–1092. \PrintBackRefs\CurrentBib
  29. \APACinsertmetastarneal1995bayesian{APACrefauthors}Neal, R\BPBIM.  \APACrefYear1995.  \APACrefbtitleBayesian Learning for Neural Networks Bayesian Learning for Neural Networks \APACtypeAddressSchool\BUPhD.  \APACaddressSchoolUniversity of Toronto. \PrintBackRefs\CurrentBib
  30. \APACinsertmetastarneal2003slice{APACrefauthors}Neal, R\BPBIM.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleSlice sampling Slice sampling.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics313705–767. \PrintBackRefs\CurrentBib
  31. \APACinsertmetastarneal2011mcmc{APACrefauthors}Neal, R\BPBIM.  \APACrefYearMonthDay2011. \BBOQ\APACrefatitleMCMC using Hamiltonian dynamics MCMC using Hamiltonian dynamics.\BBCQ \APACjournalVolNumPagesHandbook of Markov Chain Monte Carlo2112. \PrintBackRefs\CurrentBib
  32. \APACinsertmetastarjsonlite{APACrefauthors}Ooms, J.  \APACrefYearMonthDay2014. \BBOQ\APACrefatitleThe jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R Objects The jsonlite package: A practical and consistent mapping between json data and r objects.\BBCQ \APACjournalVolNumPagesarXiv:1403.2805 [stat.CO]. {APACrefURL} https://arxiv.org/abs/1403.2805 \PrintBackRefs\CurrentBib
  33. \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePyMC: A Modern and Comprehensive Probabilistic Programming Framework in Python PyMC: A modern and comprehensive probabilistic programming framework in Python.\BBCQ \APACjournalVolNumPagesPeer J Computer Science9e1516. {APACrefDOI} \doi10.7717/peerj-cs.1516 \PrintBackRefs\CurrentBib
  34. \APACinsertmetastarrlang{APACrefauthors}R Core Team.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleR: A Language and Environment for Statistical Computing R: A language and environment for statistical computing\BBCQ [\bibcomputersoftwaremanual]. \APACaddressPublisherVienna, Austria. {APACrefURL} https://www.R-project.org/ \PrintBackRefs\CurrentBib
  35. \APACrefYearMonthDay2023. \BBOQ\APACrefatitlearrow: Integration to ’Apache’ ’Arrow’ arrow: Integration to ’apache’ ’arrow’\BBCQ [\bibcomputersoftwaremanual]. \APACrefnotehttps://github.com/apache/arrow/, https://arrow.apache.org/docs/r/ \PrintBackRefs\CurrentBib
  36. \APACrefYearMonthDay2022. \BBOQ\APACrefatitlequantmod: Quantitative Financial Modelling Framework quantmod: Quantitative financial modelling framework\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=quantmod \APACrefnoteR package version 0.4.20 \PrintBackRefs\CurrentBib
  37. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleStatsmodels: Econometric and statistical modeling with python Statsmodels: Econometric and statistical modeling with python.\BBCQ \BIn \APACrefbtitle9th Python in Science Conference. 9th python in science conference. \PrintBackRefs\CurrentBib
  38. \APACinsertmetastarstan{APACrefauthors}Stan Development Team.  \APACrefYearMonthDay2023. \APACrefbtitleStan Modeling Language Users Guide and Reference Manual. Stan Modeling Language Users Guide and Reference Manual. {APACrefURL} https://mc-stan.org/users/documentation/ \PrintBackRefs\CurrentBib
  39. \APACrefYearMonthDay2008. \BBOQ\APACrefatitleParameterisation and efficient MCMC estimation of non-Gaussian state space models Parameterisation and efficient MCMC estimation of non-Gaussian state space models.\BBCQ \APACjournalVolNumPagesComputational Statistics & Data Analysis5262911–2930. \PrintBackRefs\CurrentBib
  40. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleValidating Bayesian inference algorithms with simulation-based calibration Validating Bayesian inference algorithms with simulation-based calibration.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1804.06788. \PrintBackRefs\CurrentBib
  41. \APACrefYear2009. \APACrefbtitlePython 3 Reference Manual Python 3 reference manual. \APACaddressPublisherScotts Valley, CACreateSpace. \PrintBackRefs\CurrentBib
  42. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleRank-normalization, folding, and localization: An improved R^^𝑅\widehat{R}over^ start_ARG italic_R end_ARG for assessing convergence of MCMC (with discussion) Rank-normalization, folding, and localization: An improved R^^𝑅\widehat{R}over^ start_ARG italic_R end_ARG for assessing convergence of MCMC (with discussion).\BBCQ \APACjournalVolNumPagesBayesian Analysis162667–718. \PrintBackRefs\CurrentBib
  43. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleSciPy 1.0: Fundamental Algorithms for Scientific Computing in Python SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.\BBCQ \APACjournalVolNumPagesNature Methods17261–272. {APACrefDOI} \doi10.1038/s41592-019-0686-2 \PrintBackRefs\CurrentBib
  44. \APACinsertmetastarmckinney-proc-scipy-2010{APACrefauthors}Wes McKinney.  \APACrefYearMonthDay2010. \BBOQ\APACrefatitleData Structures for Statistical Computing in Python Data Structures for Statistical Computing in Python.\BBCQ \BIn Stéfan van der Walt \BBA Jarrod Millman (\BEDS), \APACrefbtitleProceedings of the 9th Python in Science Conference Proceedings of the 9th Python in Science Conference (\BPG 56 - 61). {APACrefDOI} \doi10.25080/Majora-92bf1922-00a \PrintBackRefs\CurrentBib
  45. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleWelcome to the tidyverse Welcome to the tidyverse.\BBCQ \APACjournalVolNumPagesJournal of Open Source Software4431686. {APACrefDOI} \doi10.21105/joss.01686 \PrintBackRefs\CurrentBib

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 30 likes.

Upgrade to Pro to view all of the tweets about this paper: