Pólya's conjecture for thin products (2402.12093v2)
Abstract: Let $\Omega \subset \mathbb Rd$ be a bounded Euclidean domain. According to the famous Weyl law, both its Dirichlet eigenvalue $\lambda_k(\Omega)$ and its Neumann eigenvalue $\mu_k(\Omega)$ have the same leading asymptotics $w_k(\Omega)=C(d,\Omega)k{2/d}$ as $k \to \infty$. G. P\'olya conjectured in 1954 that each Dirichlet eigenvalue $\lambda_k(\Omega)$ is greater than $w_k(\Omega)$, while each Neumann eigenvalue $\mu_k(\Omega)$ is no more than $w_k(\Omega)$. In this paper we prove P\'olya's conjecture for thin products, i.e. domains of the form $(a\Omega_1) \times \Omega_2$, where $\Omega_1, \Omega_2$ are Euclidean domains, and $a$ is small enough. We also prove that the same inequalities hold if $\Omega_2$ is replaced by a Riemannian manifold, and thus get P\'olya's conjecture for a class of ``thin" Riemannian manifolds with boundary.
- G. Faber: Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. 1923.
- N. Filonov: On the Pólya conjecture for the Neumann problem in planar convex domains. arXiv preprint arXiv:2309.01432, 2023.
- B. M. Levitan: On the asymptotic behaviour of the spectral function of the second order elliptic equation. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 16(1), 325-352 (1952).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.