Pólya’s conjecture for the product domain (0,1) × Ω
Determine whether Pólya’s conjecture holds for the Laplace eigenvalues on the Cartesian product domain (0,1) × Ω ⊂ ℝ^{d+1}, for an arbitrary bounded Euclidean domain Ω ⊂ ℝ^d with suitable boundary regularity. Specifically, establish whether, for every k ≥ 1, the Dirichlet eigenvalues satisfy λ_k((0,1) × Ω) ≥ 4π^2 / ((ω_{d+1} |(0,1) × Ω|)^{2/(d+1)} k^{2/(d+1)}) and the positive Neumann eigenvalues satisfy μ_k((0,1) × Ω) ≤ 4π^2 / ((ω_{d+1} |(0,1) × Ω|)^{2/(d+1)} k^{2/(d+1)}).
References
Even though the interval (0,1) tiles ℝ, it is still not known whether (0,1) × Ω satisfies Pólya's conjecture for general Ω.
— Pólya's conjecture for thin products
(2402.12093 - He et al., 19 Feb 2024) in Introduction