Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Random Projection Neural Networks of Best Approximation: Convergence theory and practical applications (2402.11397v1)

Published 17 Feb 2024 in cs.LG, cs.NA, and math.NA

Abstract: We investigate the concept of Best Approximation for Feedforward Neural Networks (FNN) and explore their convergence properties through the lens of Random Projection (RPNNs). RPNNs have predetermined and fixed, once and for all, internal weights and biases, offering computational efficiency. We demonstrate that there exists a choice of external weights, for any family of such RPNNs, with non-polynomial infinitely differentiable activation functions, that exhibit an exponential convergence rate when approximating any infinitely differentiable function. For illustration purposes, we test the proposed RPNN-based function approximation, with parsimoniously chosen basis functions, across five benchmark function approximation problems. Results show that RPNNs achieve comparable performance to established methods such as Legendre Polynomials, highlighting their potential for efficient and accurate function approximation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube