Dilaton in a Multicritical 3+epsilon-D Parity Violating Field Theory (2402.09646v1)
Abstract: The multi-critical behaviour of an approximately scale and conformal invariant quantum field theory, which can be regarded as the deformation of the critical Gross-Neveu model in 3+epsilon dimensions by a nearly marginal parity violating operator, is studied using a large $N$ expansion. When epsilon is greater than a number of order 1/N, the deformation is marginally relevant and it is found to exhibit spontaneous breaking of the approximate scale symmetry accompanied by the appearance of a light scalar in its spectrum. The scalar mass is parametrically small, of order epsilon times the fermion mass and it can be identified with a light dilaton. When the dimension is reduced to 3 the deformation of the Gross-Neveu model becomes marginally irrelevant, what was a minimum of the potential becomes a maximum and the theory has a non-perturbative global instability. There is a metastable perturbative phase where the scalar does not condense and the fermions are massless separated by an energy barrier with height of order one (rather than N) from an energetically favoured phase with a runaway condensate.
- W. A. Bardeen, C. N. Leung and S. T. Love, “The Dilaton and Chiral Symmetry Breaking,” Phys. Rev. Lett. 56, 1230 (1986).
- K. i. Kondo, H. Mino and K. Yamawaki, “Critical Line and Dilaton in Scale Invariant QED,” Phys. Rev. D 39, 2430 (1989).
- W. D. Goldberger, B. Grinstein and W. Skiba, “Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider,” Phys. Rev. Lett. 100, 111802 (2008) [arXiv:0708.1463 [hep-ph]].
- B. Bellazzini, C. Csaki, J. Hubisz, J. Serra and J. Terning, “A Higgslike Dilaton,” Eur. Phys. J. C 73, no.2, 2333 (2013) [arXiv:1209.3299 [hep-ph]].
- T. Appelquist, J. Ingoldby and M. Piai, “Dilaton Effective Field Theory,” Universe 9, no.1, 10 (2023) [arXiv:2209.14867 [hep-ph]].
- R. Zwicky, “QCD with an Infrared Fixed Point and a Dilaton,” [arXiv:2312.13761 [hep-ph]].
- J. Ingoldby [Lattice Strong Dynamics], “Hidden Conformal Symmetry from Eight Flavors,” [arXiv:2401.00267 [hep-lat]].
- L. Del Debbio and R. Zwicky, “Dilaton and massive hadrons in a conformal phase,” JHEP 08, 007 (2022), [arXiv:2112.11363 [hep-ph]].
- A. Hasenfratz, “Emergent strongly coupled ultraviolet fixed point in four dimensions with eight Kähler-Dirac fermions,” Phys. Rev. D 106, no.1, 014513 (2022), [arXiv:2204.04801 [hep-lat]].
- G. W. Semenoff and F. Zhou, “Dynamical violation of scale invariance and the dilaton in a cold Fermi gas,” Phys. Rev. Lett. 120, no.20, 200401 (2018), [arXiv:1712.00119 [cond-mat.quant-gas]].
- G. W. Semenoff, “Dilaton in a cold Fermi gas,” [arXiv:1808.03861 [cond-mat.quant-gas]].
- C. Cresswell-Hogg and D. F. Litim, “Line of Fixed Points in Gross-Neveu Theories,” Phys. Rev. Lett. 130, no.20, 201602 (2023), [arXiv:2207.10115 [hep-th]].
- C. Cresswell-Hogg and D. F. Litim, “Critical fermions with spontaneously broken scale symmetry,” Phys. Rev. D 107, no.10, L101701 (2023), [arXiv:2212.06815 [hep-th]].
- R. Zwicky, “The Dilaton Improves Goldstones,” [arXiv:2306.12914 [hep-th]].
- D. F. Litim, N. Riyaz, E. Stamou and T. Steudtner, “Asymptotic safety guaranteed at four-loop order,” Phys. Rev. D 108, no.7, 076006 (2023) [arXiv:2307.08747 [hep-th]].
- C. Cresswell-Hogg and D. F. Litim, “Scale Symmetry Breaking and Generation of Mass at Quantum Critical Points,” [arXiv:2311.16246 [hep-th]].
- A. Pomarol and L. Salas, “Exploring the conformal transition from above and below,” [arXiv:2312.08332 [hep-ph]].
- D. Nogradi and B. Ozsvath, “Dilaton in scalar QFT: a no-go theorem in 4-epsilon and 3-epsilon dimensions,” SciPost Phys. 12, no.5, 169 (2022) [arXiv:2109.09822 [hep-th]].
- R. D. Pisarski, “Fixed Point Structure of (Phi**6) in Three-dimensions at Large N,” Phys. Rev. Lett. 48, 574-576 (1982)
- W. A. Bardeen, M. Moshe, and M. Bander, “Spontaneous Breaking of Scale Invariance and the Ultraviolet Fixed Point in O(N) Symmetric ((ϕ2)3superscriptsuperscriptitalic-ϕ23(\phi^{2})^{3}( italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT in Three-Dimensions) Theory,” Phys. Rev. Lett. 52 (1984) 1188.
- H. Omid, G. W. Semenoff and L. C. R. Wijewardhana, “Light dilaton in the large N𝑁Nitalic_N tricritical O(N)𝑂𝑁O(N)italic_O ( italic_N ) model,” Phys. Rev. D 94, no.12, 125017 (2016) [arXiv:1605.00750 [hep-th]].
- S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of Spontaneous Symmetry Breaking,” Phys. Rev. D 7, 1888-1910 (1973).
- A. J. Niemi and G. W. Semenoff, “Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times,” Phys. Rev. Lett. 51, 2077 (1983).
- A. N. Redlich, “Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions,” Phys. Rev. Lett. 52, 18 (1984).
- A. N. Redlich, “Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions,” Phys. Rev. D 29, 2366-2374 (1984).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.