Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improving EEG Signal Classification Accuracy Using Wasserstein Generative Adversarial Networks

Published 5 Feb 2024 in eess.SP, cs.AI, and cs.LG | (2402.09453v1)

Abstract: Electroencephalography (EEG) plays a vital role in recording brain activities and is integral to the development of brain-computer interface (BCI) technologies. However, the limited availability and high variability of EEG signals present substantial challenges in creating reliable BCIs. To address this issue, we propose a practical solution drawing on the latest developments in deep learning and Wasserstein Generative Adversarial Network (WGAN). The WGAN was trained on the BCI2000 dataset, consisting of around 1500 EEG recordings and 64 channels from 45 individuals. The generated EEG signals were evaluated via three classifiers yielding improved average accuracies. The quality of generated signals measured using Frechet Inception Distance (FID) yielded scores of 1.345 and 11.565 for eyes-open and closed respectively. Even without a spectral or spatial loss term, our WGAN model was able to emulate the spectral and spatial properties of the EEG training data. The WGAN-generated data mirrored the dominant alpha activity during closed-eye resting and high delta waves in the training data in its topographic map and power spectral density (PSD) plot. Our research testifies to the potential of WGANs in addressing the limited EEG data issue for BCI development by enhancing a small dataset to improve classifier generalizability.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.