Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Polynomial Semantics of Tractable Probabilistic Circuits (2402.09085v3)

Published 14 Feb 2024 in cs.AI

Abstract: Probabilistic circuits compute multilinear polynomials that represent multivariate probability distributions. They are tractable models that support efficient marginal inference. However, various polynomial semantics have been considered in the literature (e.g., network polynomials, likelihood polynomials, generating functions, and Fourier transforms). The relationships between circuit representations of these polynomial encodings of distributions is largely unknown. In this paper, we prove that for distributions over binary variables, each of these probabilistic circuit models is equivalent in the sense that any circuit for one of them can be transformed into a circuit for any of the others with only a polynomial increase in size. They are therefore all tractable for marginal inference on the same class of distributions. Finally, we explore the natural extension of one such polynomial semantics, called probabilistic generating circuits, to categorical random variables, and establish that inference becomes #P-hard.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.